FENG Mingxiang, FANG Zhixiang, LU Xiongbo, XIE Zefeng, XIONG Shengwu, ZHENG Meng, HUANG Shouqian. Traffic Analysis Zone-Based Epidemic Estimation Approach of COVID-19 Based on Mobile Phone Data:An Example of Wuhan[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 651-657, 681. DOI: 10.13203/j.whugis20200141
Citation: FENG Mingxiang, FANG Zhixiang, LU Xiongbo, XIE Zefeng, XIONG Shengwu, ZHENG Meng, HUANG Shouqian. Traffic Analysis Zone-Based Epidemic Estimation Approach of COVID-19 Based on Mobile Phone Data:An Example of Wuhan[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 651-657, 681. DOI: 10.13203/j.whugis20200141

Traffic Analysis Zone-Based Epidemic Estimation Approach of COVID-19 Based on Mobile Phone Data:An Example of Wuhan

Funds: 

The National Key Research and Development Program of China 2017YFB0503802

the National Natural Science Foundation of China 41771473

More Information
  • Author Bio:

    FENG Mingxiang, PhD, specializes in big spatial data mining. E-mail: 2015106190004@whu.edu.cn

  • Corresponding author:

    TIAN Liqiao, PhD, professor. E-mail: zxfang@whu.edu.cn

  • Received Date: March 31, 2020
  • Published Date: May 04, 2020
  • Current epidemic models mainly estimate the number of confirmed patients by fitting statistical data. Few studies consider the direct effect of fine-grained spatial crowd mobile interaction on the spatial-temporal diffusion features. A new method for estimating the spatial-temporal spread process of coronavirus disease 2019 (COVID-19) is proposed, incorporating spatial interaction features into epidemiological models. This paper also estimates the number of confirmed patients and spatial-temporal spread process of COVID-19 in Wuhan from December 2019 to March 2020. The results show that the method proposed in this paper can effectively estimate the daily traffic analysis zones (TAZs) where new confirmed patients appear, completely covering the TAZs with the epidemic announcements. And the TAZs with the epidemic announcements account for 72.7% of the estimated TAZs. The cumulative number of estimated confirmed patients agrees very well with the total number of officially announced confirmed patients after February 18, 2020, with a gap of approximately 5.6%, indirectly verifying the rationality of the previous estimation. The method proposed in this paper can effectively estimate the spread of infectious diseases under finerained spaces. It also has scientific significance in understanding the influence mechanism of the crowd interaction under finegrained spaces on the spatial-temporal spread of infectious diseases, and enhancing the macroscopically spatial interpretability of epidemiological models macroscopic.
  • [1]
    Wu F, Zhao S, Yu B, et al. A New Coronavirus Associated with Human Respiratory Disease in China[J]. Nature, 2020, 579(7798):265-269 doi: 10.1038/s41586-020-2008-3
    [2]
    Layne S P, Hyman J M, Morens D M, et al. New Coronavirus Outbreak:Faming Questions for Pandemic Prevention[J]. Science, 2020, 12(534):eabb1469
    [3]
    Yang Z, Zeng Z, Wang K, et al. Modified SEIR and AI Prediction of the Epidemics Trend of COVID-19 in China Under Public Health Interventions[J]. Journal of Thoracic Disease, 2020, 12(3):165-174 doi: 10.21037/jtd.2020.02.64
    [4]
    Cooke K L, Driessche P. Analysis of an SEIRS Epidemic Model with Two Delays[J].Journal of Mathematical Biology, 1996, 35(2):240-260 doi: 10.1007/s002850050051
    [5]
    Jumpen W, Wiwatanapataphee B, Wu Y H, et al. A SEIQR Model for Pandemic Influenza and Its Parameter Identification[J]. International Journal of Pure and Applied Mathematics, 2009, 52(2):247-265 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000003783313
    [6]
    Wang H, Wang Z, Dong Y, et al. Phase-Adjusted Estimation of the Number of Coronavirus Disease 2019 Cases in Wuhan, China[J]. Cell Discovery, 2020, 6(1):1-8 https://pubmed.ncbi.nlm.nih.gov/32133152/
    [7]
    Maier B, Brockmann D.Effective Containment Explains Sub-exponential Growth in Confirmed Cases of Recent COVID-19 Outbreak in Mainland China[EB/OL]. arXiv, 2002: 07572v1
    [8]
    周涛, 刘权辉, 杨紫陌, 等.武汉新型冠状病毒感染肺炎基本再生数的初步预测[J].中国循证医学杂志2020, 20(3):1-6 http://www.cnki.com.cn/Article/CJFDTotal-ZZXZ202003018.htm

    Zhou Tao, Liu Quanhui, Yang Zimo, et al. Preliminary Prediction of the Basic Reproduction Number of the Wuhan Novel Coronavirus 2019-nCoV[J].Chinese Journal of Evidence-Based Medicine, 2020, 20(3):1-6 http://www.cnki.com.cn/Article/CJFDTotal-ZZXZ202003018.htm
    [9]
    Li Q, Guan X, Wu P, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia[J]. The New England Journal of Medicine, 2020, DOI: 10.1056/NEJMoa2001316
    [10]
    Huang C, Wang Y, Li X, et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223):497-507 doi: 10.1016/S0140-6736(20)30183-5
    [11]
    Chen N, Zhou M, Dong X, et al. Epidemiological and Clinical Characteristics of 99 Cases of 2019 Novel Coronavirus Pneumonia in Wuhan, China:A Descriptive Study[J].Lancet, 2020, 395(10223):508-513 https://www.sciencedirect.com/science/article/pii/S0140673620302117
    [12]
    Smriti M. Why Does the Coronavirus Spread So Easily Between People[J]. Nature, 2020, 579(7798):183-190 https://www.ncbi.nlm.nih.gov/pubmed/32157230
    [13]
    Wrapp D, Wang N, Corbett K S, et al. Cryo-EM Structure of the 2019-nCov Spike in the Perfusion Conformation[J]. Science, 2020, 367(6483): 1260-1263 doi: 10.1126/science.abb2507
    [14]
    Miller H J, Shaw S L. Geographic Information Systems for Transportation[M]. London:Oxford University Press, 2001
    [15]
    Hu H, Nigmatulina K, Eckhoff P.The Scaling of Contact Rates with Population Density for the Infectious Disease Models[J].Mathematical Biosciences, 2013, 244(2):125-134 doi: 10.1016/j.mbs.2013.04.013
    [16]
    Kraemer M U G, Perkins T A, Cummings D A T, et al. Big City, Small World:Density, Contact Rates, and Transmission of Dengue Across Pakistan[J]. Journal of the Royal Society Interface, 2015, 12(111):20150468 doi: 10.1098/rsif.2015.0468
    [17]
    Zhang J, Lou J, Ma Z, et al. A Compartmental Model for the Analysis of SARS Transmission Patterns and Outbreak Control Measures in China[J].Applied Mathematics and Computation, 2005, 162(2):909-924 doi: 10.1016/j.amc.2003.12.131
    [18]
    Ruan S, Wang W. Dynamical Behavior of an Epidemic Model with a Nonlinear Incidence Rate[J]. Journal of Differential Equations, 2003, 188(1):135-163 doi: 10.1016/S0022-0396(02)00089-X
    [19]
    Imai N, Dorigatti I, Cori A, et al. Report 1: Estimating the Potential Total Number of Novel Coronavirus Cases in Wuhan City, China[R/OL]. (2020-01-17)[2020-03-28].https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/news--uhancoronavirus/
    [20]
    Volz E, Baguelin M, Bhatia S, et al. Report 5: Phylogenetic Analysis of SARS-CoV-2[R/OL]. (2020-02-15)[2020-03-28].https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/news-wuhancoronavirus/
  • Cited by

    Periodical cited type(37)

    1. 罗斌,刘文豪,吴进,韩嘉福,吴文周,李洪省. 从地理信息系统到地理智能体. 地球信息科学学报. 2025(01): 83-99 .
    2. 王培晓,张恒才,张岩,程诗奋,张彤,陆锋. 地理空间智能预测研究进展与发展趋势. 地球信息科学学报. 2025(01): 60-82 .
    3. 王行风,陈国良. 地理知识图谱辅助的煤矿区生态损伤智慧识别研究. 地球信息科学学报. 2025(02): 367-380 .
    4. 张岸,朱俊锴. 新一代人工智能驱动下地图学研究的机遇与挑战. 地球信息科学学报. 2024(01): 35-45 .
    5. 刘康. 人类移动数据生成方法:研究进展与趋势探讨. 地球信息科学学报. 2024(04): 831-847 .
    6. 闾国年,袁林旺,陈旻,张雪英,周良辰,俞肇元,罗文,乐松山,吴明光. 地理信息学科发展的思考. 地球信息科学学报. 2024(04): 767-778 .
    7. 吴田军,骆剑承,李曼嘉,张静,赵馨,胡晓东,左进,闵帆,王玲玉,黄启厅. 地理时空数字化底座理论框架构建与应用实践. 地球信息科学学报. 2024(04): 799-830 .
    8. 王宇君,郭健,徐立,李宗明,李可欣. 利用深度森林进行船舶类型分类识别. 测绘科学技术学报. 2024(04): 425-432+440 .
    9. 邬伦,侯远樵,刘瑜. 大数据的6种地理学应用范式. 测绘学报. 2024(08): 1465-1479 .
    10. 石岩,王达,邓敏,杨学习. 时空异常探测:从数据驱动到知识驱动的内涵转变与实现路径. 测绘学报. 2024(08): 1493-1504 .
    11. 杨开先,甄峰. 地理学视角下城市空间智能化研究进展与思考. 地理科学. 2024(07): 1166-1177 .
    12. 李洁,王继周,毛曦,路文娟. 基于语义编码的自然语言时空问句语义理解. 测绘科学. 2024(11): 197-206 .
    13. 刘瑜,汪珂丽,邢潇月,郭浩,张维昱,罗琴瑶,高松,黄舟,李海峰,李新,王姣娥,王劲峰,朱递. 地理分析中的空间效应. 地理学报. 2023(03): 517-531 .
    14. 杨颖. 人工智能在地图学中的应用展望. 电子技术. 2023(03): 162-163 .
    15. 诸云强,孙凯,胡修棉,闾海荣,王新兵,杨杰,王曙,李威蓉,宋佳,苏娜,牟兴林. 大规模地球科学知识图谱构建与共享应用框架研究与实践. 地球信息科学学报. 2023(06): 1215-1227 .
    16. 陆锋,诸云强,张雪英. 时空知识图谱研究进展与展望. 地球信息科学学报. 2023(06): 1091-1105 .
    17. 诸云强,孙凯,李威蓉,王曙,宋佳,程全英,杨杰,牟兴林,耿文广,代小亮. 地球科学知识图谱比较分析与启示:构建方法与内容视角. 高校地质学报. 2023(03): 382-394 .
    18. 张彤,刘仁宇,王培晓,高楚林,刘杰,王望舒. 感知物理先验的机器学习及其在地理空间智能中的研究前景. 地球信息科学学报. 2023(07): 1297-1311 .
    19. 丁建丽,葛翔宇,王瑾杰,赵爽,丁玥,秦少峰,朱传梅,马雯. 地理学领域的人工智能应用与思考. 新疆大学学报(自然科学版)(中英文). 2023(04): 385-397 .
    20. 付偲,李超岭,张海燕,刘畅,李丰丹. 基于多模态特征融合的地质体识别方法. 地球科学. 2023(10): 3743-3752 .
    21. Yunqiang ZHU,Kai SUN,Shu WANG,Chenghu ZHOU,Feng LU,Hairong LV,Qinjun QIU,Xinbing WANG,Yanmin QI. An adaptive representation model for geoscience knowledge graphs considering complex spatiotemporal features and relationships. Science China Earth Sciences. 2023(11): 2563-2578 .
    22. 诸云强,孙凯,王曙,周成虎,陆锋,闾海荣,邱芹军,王新兵,祁彦民. 顾及复杂时空特征及关系的地球科学知识图谱自适应表达模型. 中国科学:地球科学. 2023(11): 2609-2622 .
    23. 陈杰,邓敏,刘启亮,石岩,刘慧敏. 大数据智能时代地理信息科学专业人才培养方案的提质与实践. 测绘通报. 2023(11): 163-167 .
    24. 黄露,侯爱羚. 基于省市联动的基础测绘数据智能更新技术. 地理空间信息. 2023(12): 83-85 .
    25. 许磊,李琪,陶雲,余红楚,杜文英,陈泽强,陈能成. 数据驱动的短临降水预报可靠性分析技术体系研究. 时空信息学报. 2023(04): 508-517 .
    26. 贺智,陈逸敏,刘凯. AI时代地理信息科学一流本科专业课程建设探索. 测绘通报. 2023(S2): 60-63 .
    27. 杨学习,邓敏,刘瑜. 社会感知与地理空间智能的研究动态与展望——“社会感知与地理空间智能”专栏导读. 地理与地理信息科学. 2022(01): 1-4 .
    28. 李双成,张文彬,陈立英,梁泽,张雅娟,王铮. 孪生空间及其应用——兼论地理研究空间的重构. 地理学报. 2022(03): 507-517 .
    29. 孔宇,甄峰,张姗琪. 智能技术影响下的城市空间研究进展与思考. 地理科学进展. 2022(06): 1068-1081 .
    30. 刘瑜,郭浩,李海峰,董卫华,裴韬. 从地理规律到地理空间人工智能. 测绘学报. 2022(06): 1062-1069 .
    31. 涂伟,夏吉喆,汪驰升,陆旻,乐阳. 面向智慧城市的空间计算与分析类课程教学模式探索与实践. 测绘地理信息. 2022(S1): 14-17 .
    32. 高嘉良,陆锋,彭澎,徐阳. 基于网络文本迁移学习的旅游知识图谱构建. 武汉大学学报(信息科学版). 2022(08): 1191-1200+1219 .
    33. 武芳,杜佳威,钱海忠,翟仁健. 地图综合智能化研究的发展与思考. 武汉大学学报(信息科学版). 2022(10): 1675-1687 .
    34. 兰锐,陈慧玲,童杨辉. “自然资源大脑”构建关键技术及应用设想. 自然资源信息化. 2022(05): 99-105 .
    35. 慎利,徐柱,李志林,刘万增,崔秉良. 从地理信息服务到地理知识服务:基本问题与发展路径. 测绘学报. 2021(09): 1194-1202 .
    36. 张永生,张振超,童晓冲,纪松,于英,赖广陵. 地理空间智能研究进展和面临的若干挑战. 测绘学报. 2021(09): 1137-1146 .
    37. 艾廷华. 深度学习赋能地图制图的若干思考. 测绘学报. 2021(09): 1170-1182 .

    Other cited types(13)

Catalog

    Article views (1892) PDF downloads (211) Cited by(50)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return