SHI Yunfei, ZHAO Jianqing, LI Xuefei, WANG Ronghua, LIU Kehui, ZHAI Qiuping, TIAN De. A Method for Constructing Automatically 3D Property Right Cluster for Apartment Buildings[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3): 447-454. DOI: 10.13203/j.whugis20200023
Citation: SHI Yunfei, ZHAO Jianqing, LI Xuefei, WANG Ronghua, LIU Kehui, ZHAI Qiuping, TIAN De. A Method for Constructing Automatically 3D Property Right Cluster for Apartment Buildings[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3): 447-454. DOI: 10.13203/j.whugis20200023

A Method for Constructing Automatically 3D Property Right Cluster for Apartment Buildings

Funds: 

The Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources KF-2018-03-034

the National Natural Science Foundation of China 41601555

the Natural Science Foundation of Shandong Province ZR2017BD018

the Open Fund of Hebei Key Laboratory of Geological Resources and Environment Monitoring and Protection JCYKT201910

More Information
  • Author Bio:

    SHI Yunfei, PhD, professor, specializes in the theories and application of 3D GIS, 3D cadastral and smart city. E-mail: 55734619@qq.com

  • Corresponding author:

    ZHAO Jianqing, senior engineer. E-mail: 13931117667@163.com

  • Received Date: March 10, 2020
  • Published Date: March 04, 2022
  •   Objectives  Buildings can be divided into physical cluster and property right cluster from different perspectives, and the latter attached to the former. The existing methods can construct physical cluster and property right cluster of the same building automatically, but the two resulting clusters are independent of each other. This not only increases the cost of modeling, but also is not conducive to the update and maintenance of model data in the later period.
      Methods  For the problem, we study the relationship between physical cluster and property right cluster of apartment buildings, and find that the hierarchy of connected boundaries determines the property right solids aggregated by cells, and present a method to transform physical clustering into property right clustering automatically. With existing physical clusters, the method transforms the cells of physical clusters into dual points, and the connected boundaries between cells into semantic edges, and the whole physical cluster into node relation graph with Poincaré duality transformation. A segmenting algorithm is designed for node relation graph, which can divide node relation graph into sub node relation graph representing proprietary and co-owned property according to the semantic information of the edges. Furthermore, the non-common boundary surfaces of the cell set corresponded by sub node relation graph are extracted to construct the property right solids, and the aggregation of the property right solids forms the property right cluster.
      Results  Instead of building two separate clusters, the proposed method only builds a physical cluster and property right cluster is generated by the transformation.
      Conclusions  The results show that the proposed method can identify the property right solids and construct property right cluster in the existing physical cluster automatically. It saves the modeling cost and facilitates the update and maintenance of the later data.
  • [1]
    应申, 陈乃镔, 李威阳, 等. 三维房产群集对象可视化方法[J]. 武汉大学学报·信息科学版, 2020, 45(1): 81-88 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202001011.htm

    Ying Shen, Chen Naibin, Li Weiyang, et al. Visualization Methods for the Coherent Set of 3D Building Property Units[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 81-88 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202001011.htm
    [2]
    Ying S, Chen N B, Li W Y, et al. Distortion Visualization Techniques for 3D Coherent Sets: A Case Study of 3D Building Property Units[J]. Computers, Environment and Urban Systems, 2019, 78: 101382 doi: 10.1016/j.compenvurbsys.2019.101382
    [3]
    史云飞. 三维地籍空间数据模型及其关键技术研究[D]. 武汉: 武汉大学, 2009

    Shi Yunfei. Research on Three Dimensional Cadastral Spatial Data Model and the Related Key Technology[D]. Wuhan: Wuhan University, 2009
    [4]
    贺彪, 李霖, 郭仁忠, 等. 顾及外拓扑的异构建筑三维拓扑重建[J]. 武汉大学学报·信息科学版, 2011, 36(5): 579-583 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201105018.htm

    He Biao, Li Lin, Guo Renzhong, et al. 3D Topological Reconstruction of Heterogeneous Buildings Considering Exterior Topology[J]. Geomatics and Information Science of Wuhan University, 2011, 36 (5): 579-583 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201105018.htm
    [5]
    张玲玲, 史云飞, 吕春光, 等. 顾及拓扑的室内薄壁三维模型重建方法[J]. 测绘科学, 2019, 44(12): 141-146 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201912021.htm

    Zhang Lingling, Shi Yunfei, Lü Chunguang, et al. A Method for Reconstructing Indoor Thin-Wall 3D Model Considering Topology[J]. Science of Surveying and Mapping, 2019, 44(12): 141-146 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201912021.htm
    [6]
    张晖, 刘超, 李妍, 等. 基于CityEngine的建筑物三维建模技术研究[J]. 测绘通报, 2014 (11): 108-112 https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201411029.htm

    Zhang Hui, Liu Chao, Li Yan, et al. Research on 3D Building Modeling Technology Based on CityEngine [J]. Bulletin of Surveying and Mapping, 2014(11): 108-112 https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201411029.htm
    [7]
    Arens C, Stoter J, van Oosterom P. Modelling 3D Spatial Objects in a Geo-DBMS Using 3D Primitive [J]. Computers and Geosciences, 2005, 31(2): 165-177 doi: 10.1016/j.cageo.2004.05.013
    [8]
    Ying S, Guo R Z, Li L, et al. Construction of 3D Volumetric Objects for a 3D Cadastral System[J]. Transactions in GIS, 2015, 19(5): 758-779 doi: 10.1111/tgis.12129
    [9]
    李霖, 赵志刚, 郭仁忠, 等. 空间体对象间三维拓扑构建研究[J]. 武汉大学学报·信息科学版, 2012, 37(6): 719-723 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201206023.htm

    Li Lin, Zhao Zhigang, Guo Renzhong, et al. 3D Topological Construction for Spatial Physical Object [J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 719-723 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201206023.htm
    [10]
    Stoter J E, van Oosterom P J M. Technological Aspects of a Full 3D Cadastral Registration[J]. International Journal of Geographical Information Science, 2005, 19(6): 669-696 doi: 10.1080/13658810500106042
    [11]
    谭峻. 房地产产权产籍管理[M]. 北京: 中国人民大学出版社, 2002

    Tan Jun. Real Estate Property Management[M]. Beijing: People's University Publication House, 2002
    [12]
    Lee J. A Spatial Access-Oriented Implementation of a 3-D GIS Topological Data Model for Urban Entities[J]. GeoInformatica, 2004, 8(3): 237-264
    [13]
    史云飞, 卞西蜀, 张永翔, 等. 兼顾语义的室内3维模型自动重建方法[J]. 导航定位学报, 2020, 8(1): 9-14 https://www.cnki.com.cn/Article/CJFDTOTAL-CHWZ202001002.htm

    Shi Yunfei, Bian Xishu, Zhang Yongxiang, et al. An Automatic Reconstruction Method for Indoor Three-Dimensional Model Considering Semantics [J]. Journal of Navigation and Positioning, 2020, 8(1): 9-14 https://www.cnki.com.cn/Article/CJFDTOTAL-CHWZ202001002.htm
  • Related Articles

    [1]XIONG Siting, WEI Ruyi, HOU Wei, DENG Zhichao, ZHANG Bochen, YAN Qin, LI Qingquan. Land Cover Classification Based on InSAR Coherence and LSTM Model[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240460
    [2]LI Hanxu, LI Xin, HUANG Guanwen, ZHANG Qin, CHEN Shipeng. LSTM Neural Network Assisted GNSS/SINS Vehicle Positioning Based on Speed Classification[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230061
    [3]TANG Shengjun, ZHANG Yunjie, LI Xiaoming, YAO Mengmeng, YE Zhihuang, LI Yaxin, GUO Renzhong, WANG Weixi. A High-Precision Indoor Point Cloud Classification Method Jointly Optimized by Super Voxel Random Forest and LSTM Neural Network[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 525-533. DOI: 10.13203/j.whugis20220125
    [4]WEI Erhu, REN Xiaobin, LIU Jingnan, LI Lianyan, WU Shuguang, NIE Guigen. Prediction of Lunar Libration Parameters Using LSTM[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1815-1822. DOI: 10.13203/j.whugis20200318
    [5]WANG Li, XU Hao, SHU Bao, YI Chen, TIAN Yunqing. A Multi-source Heterogeneous Data Fusion Method for Landslide Monitoring with Mutual Information and IPSO-LSTM Neural Network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1478-1488. DOI: 10.13203/j.whugis20210131
    [6]ZHANG Zhenglu, WANG Xiaomin, DENG Yong, XIE Niansheng. Application of Fuzzy Neural Network in Deformation Analysis and Prediction[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 6-8.
    [7]ZHANG Zhenglu, WANG Hongchen, DENG Yong, XIE Niansheng. Methods for Landslide Deformation Analysis and Prediction[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1387-1389.
    [8]DENG Xingsheng, WANG Xinzhou. Application of Dynamic Neural Network in Prediction Model[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1): 93-96.
    [9]WANG Xinzhou DENG Xingsheng, . Fuzzy Neural Network Modeling for Dam Deformation Prediction[J]. Geomatics and Information Science of Wuhan University, 2005, 30(7): 588-591.
    [10]Deng Yuejin, Wang Baoyuan, Zhang Zhenglu. Application of Fuzzy Artifical Neural Network to the Deformation Analysis and Predication of Side Slope[J]. Geomatics and Information Science of Wuhan University, 1998, 23(1): 26-31.
  • Cited by

    Periodical cited type(8)

    1. 贺晗,李翠杰,杨怀志,朱星盛,刘洪润,秦健. 高铁北斗基准控制网构建及优化方法. 中国铁路. 2024(04): 22-28 .
    2. 张献志,周涛,叶远斌,张紫琼,吕鹏军. 惠州市国产北斗化平台实时定位精度测试分析. 北京测绘. 2024(05): 763-767 .
    3. 刘朝晖. 铁路BDS地基增强带状空间误差建模方法. 导航定位学报. 2024(03): 112-119 .
    4. 何庆,欧阳霖,陈春花,靳文凭,张玉冰,史照清. 湖南省卫星导航定位基准站网服务体系建设及思考. 国土资源导刊. 2024(03): 1-8 .
    5. 赵毅,吴晓莉,姜英明,冯彦同. 大规模GNSS基准站网坐标解算方法研究. 南京信息工程大学学报(自然科学版). 2022(06): 694-700 .
    6. 刘洋,曾群意,郭忠臣,胡茂林,任尚勇,黎洋. 千寻位置与RTK技术在电力工程测量中的比较分析. 电力勘测设计. 2021(07): 78-82 .
    7. 谭明建,张熙,石鑫. 分布式CORS资源协同服务技术实现. 导航定位学报. 2019(02): 118-123 .
    8. 张熙,陈现春,冯威,张晶晶,包海. 附有空间误差梯度信息的虚拟基准站服务技术. 西南交通大学学报. 2019(05): 1005-1011 .

    Other cited types(8)

Catalog

    Article views (997) PDF downloads (56) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return