ZHANG Siqi, WANG Tao, HE Xiufeng, WAN Qichang. A Micro Ground-Based Interferometric Radar System for Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1801-1808. DOI: 10.13203/j.whugis20190474
Citation: ZHANG Siqi, WANG Tao, HE Xiufeng, WAN Qichang. A Micro Ground-Based Interferometric Radar System for Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1801-1808. DOI: 10.13203/j.whugis20190474

A Micro Ground-Based Interferometric Radar System for Deformation Monitoring

Funds: 

The Basic and Advanced Research Program of Chongqing cstc2016jcyjA0457

the Graduate Student Research Innovation Project of Chongqing City CYS19064

the National Natural Science Foundation of China 41474023

the National Natural Science Foundation of China 41830110

More Information
  • Author Bio:

    ZHANG Siqi, postgraduate, specializes in radar signal processing and deformation monitoring radar. E-mail: wyzsq961004@163.com

  • Corresponding author:

    WANG Tao, PhD, associate professor. E-mail: wangtaocqu@163.com

  • Received Date: December 25, 2019
  • Published Date: November 18, 2020
  •   Objectives  Ground-based multiple-input multiple-output(MIMO) radar can avoid using large antennas or long linear guide rail. Compared with real aperture radar and synthetic aperture radar, MIMO radar has more advantages under the limitation of volume and weight. It is more suitable for use in narrow spaces like tunnels. In order to be used in these scenes, a micro ground-based interferometric radar based on MIMO technology is presented and discussed.
      Methods  Millimeter wave frequency band is used to achieve the miniaturization. MIMO technology can be used to construct large-scale virtual aperture antenna to improve angular resolution. The high range resolution is provided by the wideband frequency modulated continuous wave (FMCW) technology. Fast Fourier transform and beamforming algorithms are used to replace the traditional back projection algorithms as imaging algorithms, which can achieve better real time performance. Differential interferometry can obtain the high-precision deformation of the target in the direction of line of sight.
      Results  The prototype radar is a 77 GHz FMCW radar based on two transmitter antennas and four receiver antennas, can offer up to 4 GHz sweep bandwidth. Corner reflector is moving along a guide rail under control of stepper motor to simulate the small deformation of the monitoring target. The displacement curve of the corner reflector that varied with time is measured by the radar and compared with its actual displacement curve.
      Conclusions  The experimental results show that the radar system can get the image of short-range targets, obtain better displacement accuracy than sub-millimeter and have strong anti-interference ability.
  • [1]
    郑建雷, 黄杏. TS 60全站仪在船闸高边坡水平位移监测中的应用[J].测绘与空间地理信息, 2019, 42(7): 229-231 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dbch201907070

    Zheng Jianlei, Huang Xing. Application of TS 60 Total Station in High Slope Horizontal Displacement Monitoring of Shiplock[J]. Geomatics and Spatial Information Technology, 2019, 42(7): 229-231 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dbch201907070
    [2]
    李飞, 朱鸿鹄, 张诚成, 等.地基变形光纤光栅监测可行性的试验研究[J].浙江大学学报(工学版), 2017, 51(1): 204-211 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjdxxb-gx201701026

    Li Fei, Zhu Honghu, Zhang Chengcheng, et al.Experimental Study on Feasibility of Fiber Bragg Grating-Based Foundation Deformation Monitoring[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(1): 204-211 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjdxxb-gx201701026
    [3]
    Tasci L. Deformation Monitoring in Steel Arch Bridges Through Close-Range Photogrammetry and the Finite Element Method[J]. Experimental Techniques, 2015, 39(3): 3-10 doi: 10.1111/ext.12022
    [4]
    熊春宝, 路华丽, 朱劲松, 等.基于GPS-RTK和加速度计的桥梁动态变形监测试验[J].振动与冲击, 2019, 38(12): 69-73 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdycj201912010

    Xiong Chunbao, Lu Huali, Zhu Jinsong, et al. Dynamic Deformation Monitoring of Bridge Structures Based on GPS-RTK and Accelerometers[J]. Journal of Vibration and Shock, 2019, 38(12): 69-73 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdycj201912010
    [5]
    Yang H, Omidalizarandi M, Xu X, et al. Terrestrial Laser Scanning Technology for Deformation Monitoring and Surface Modeling of Arch Structures[J]. Composite Structures, 2017, 169: 173-179 doi: 10.1016/j.compstruct.2016.10.095
    [6]
    李兵权, 李永生, 姜文亮, 等.基于地基真实孔径雷达的边坡动态监测研究与应用[J].武汉大学学报·信息科学版, 2019, 44(7): 1 093-1 098 doi: 10.13203/j.whugis20190049

    Li Bingquan, Li Yongsheng, Jiang Wenliang, et al. Research and Application of Slope Dynamic Monitoring Based on Ground-Based Real Aperture Radar[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1 093-1 098 doi: 10.13203/j.whugis20190049
    [7]
    吴星辉, 马海涛, 张杰.地基合成孔径雷达的发展现状及应用[J].武汉大学学报·信息科学版, 2019, 44(7) : 1 073-1 081 doi: 10.13203/j.whugis20190058

    Wu Xinghui, Ma Haitao, Zhang Jie. Development Status and Application of Ground-Based Synthetic Aperture Radar[J].Geomatics and Information Science of Wuhan University, 2019, 44(7) : 1 073-1 081 doi: 10.13203/j.whugis20190058
    [8]
    Huang Q, Luzi G, Monserrat O, et al. Ground-based Synthetic Aperture Radar Interferometry for Deformation Monitoring: A Case Study at Geheyan Dam, China[J].Journal of Applied Remote Sensing, 2017, 11(3): 036030 http://adsabs.harvard.edu/abs/2017JARS...11c6030H
    [9]
    闫国斌, 陶志刚, 孙光林, 等.边坡雷达在矿区边坡监测区域的应用分析[J].工业安全与环保, 2015, 41(10): 57-60 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gyaqyfc201510017

    Yan Guobin, Tao Zhigang, Sun Guanglin, et al. Application Analysis of Slope Stability Radar in the Mine Slope Monitoring Risk Area[J]. Industrial Safety and Environmental Protection, 2015, 41(10): 57-60 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gyaqyfc201510017
    [10]
    Rödelsperger S, Läufer G, Gerstenecker C, et al. Monitoring of Displacements with Ground-based Microwave Interferometry: IBIS-S and IBIS-L[J]. Journal of Applied Geodesy, 2010, 4(1): 41-54 http://adsabs.harvard.edu/abs/2010JAGeo...4...41R
    [11]
    曾涛, 邓云开, 胡程, 等.地基差分干涉雷达发展现状及应用实例[J].雷达学报, 2019, 8(1): 154-170 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ldxb201901016

    Zeng Tao, Deng Yunkai, Hu Cheng, et al.Development State and Application Examples of Ground-based Differential Interferometric Radar[J]. Journal of Radars, 2019, 8(1): 154-170 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ldxb201901016
    [12]
    赵永波, 刘宏伟. MIMO雷达技术综述[J].数据采集与处理, 2018, 33(3): 389-399 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjcjycl201803001

    Zhao Yongbo, Liu Hongwei. Overview on MIMO Radar[J]. Journal of Data Acquisition and Processing, 2018, 33(3): 389-399 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjcjycl201803001
    [13]
    Zwanetski A, Kronauge M, Rohling H. Waveform Design for FMCW MIMO Radar Based on Frequency Division[C]. The 14th International Radar Symposium (IRS), Dresden, Germany, 2013
    [14]
    江冰, 周腾, 唐玥.一种性价比高的TDM MIMO雷达系统设计和实验[J].现代雷达, 2017, 39(2): 61-65 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdld201702011

    Jiang Bing, Zhou Teng, Tang Yao. Design and Experiment of a Cost-Effective TDM MIMO Radar System[J].Modem Radar, 2017, 39(2):61-65 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdld201702011
    [15]
    洪伟, 余超, 陈继新, 等.毫米波与太赫兹技术[J].中国科学:信息科学, 2016, 46(8): 1 086-1 107 http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-PZKX201608009.htm

    Hong Wei, Yu Chao, Chen Jixin, et al. Millimeter Wave and Terahertz Technology[J]. Science in China:Information Sciences, 2016, 46(8):1 086-1 107 http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-PZKX201608009.htm
    [16]
    Ganis A, Navarro E M, Schoenlinner B, et al. A Portable 3D Imaging FMCW MIMO Radar Demonstrator with a 24×24 Antenna Array for Medium-Range Applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 56(1): 298-312 http://ieeexplore.ieee.org/document/8048534
    [17]
    Huang Y, Brennan P V. FMCW Based MIMO Imaging Radar for Maritime Navigation[J]. Progress in Electromagnetics Research, 2011, 115: 327-342 doi: 10.2528/PIER11021509
    [18]
    Dorp P V. LFMCW Based MIMO Imaging Processing with Keystone Transform[C]. European Radar Conference (EuRAD), Nuremberg, Germany, 2013
    [19]
    Miralles E, Multerer T, Ganis A, et al. Multifunctional and Compact 3D FMCW MIMO Radar System with Rectangular Array for Medium-range Applications[J]. IEEE Aerospace and Electronic Systems Magazine, 2018, 33(4): 46-54 doi: 10.1109/MAES.2018.160277
    [20]
    王伟, 马跃华, 王咸鹏.一种高运算效率的MIMO雷达BP成像算法[J].系统工程与电子技术, 2013, 35(10): 2 080-2 085 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xtgcydzjs201310011

    Wang Wei, Ma Yuehua, Wang Xianpeng. High Computation Efficiency BP Imaging Algorithm for MIMO Radar[J]. Systems Engineering and Electronics, 2013, 35(10): 2 080-2 085 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xtgcydzjs201310011
    [21]
    王怀军, 黄春琳, 陆珉, 等. MIMO雷达反向投影成像算法[J].系统工程与电子技术, 2010, 32(8): 1 567-1 573 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xtgcydzjs201008003

    Wang Huaijun, Huang Chunlin, Lu Min, et al. Back Projection Imaging Algorithm for MIMO Radar[J]. Systems Engineering and Electronics, 2010, 32(8): 1 567-1 573 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xtgcydzjs201008003
    [22]
    黄声享, 罗力, 何超.地面微波干涉雷达与GPS测定桥梁挠度的对比试验分析[J].武汉大学学报·信息科学版, 2012, 37(10): 1 173-1 176 http://ch.whu.edu.cn/article/id/334

    Huang Shengxiang, Luo Li, He Chao. Comparative Test Analysis for Determining Bridge Deflection by Using Ground-Based SAR and GPS[J]. Geomatics and Information Science of Wuhan University, 2012, 37(10): 1 173-1 176 http://ch.whu.edu.cn/article/id/334
  • Related Articles

    [1]DU Yan, NING Lize, XIE Mowen, BAI Yunfei, LI Heng, JIA Beining. A Prediction Model of Landslide Displacement in Reservoir Area Considering Time Lag Effect[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1347-1355. DOI: 10.13203/j.whugis20220133
    [2]XIAO Ruya, HE Xiufeng. Deformation Monitoring of Reservoirs and Dams Using Time-Series InSAR[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1334-1341. DOI: 10.13203/j.whugis20170327
    [3]ZHANG Yan, LV Pinji, LIU Jia. Impact of the Yangtze River Three Gorges Reservoir on Fault Activity[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1497-1500. DOI: 10.13203/j.whugis20140983
    [4]HUANG Shengxiang, LUO Li. Stability Analysis and Results of the Landslide MonitoringDatum in the Three Gorges Reservoir Area[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 367-372. DOI: 10.13203/j.whugis20120019
    [5]WU Xueling, REN Fu, NIU Ruiqing. Spatial Intelligent Prediction of Landslide Hazard Based on Multi-source Data in Three Gorges Reservoir Area[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 963-968.
    [6]HU Teng, DU Ruilin, ZHANG Zhenhua, WU Yue. Simulation and Mechanism Analysis on Crustal Vertically Deformation in Three Gorges Reservoir Area Under the Condition of Reservoir Impoundment[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 33-36.
    [7]WU Tao, YAN Huiwu, TANG Guigang. Prediction on Time Series Analysis of Water Quality in Yangtze Gorges Reservoir Area[J]. Geomatics and Information Science of Wuhan University, 2006, 31(6): 500-502.
    [8]DU Ruilin, QIAO Xuejun, YANG Shaomin, WANG Qi. Results of the Crustal Deformation by GPS Survey and Horizontal Strain Rate Fields in the Three Gorges Area[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 768-771.
    [9]SHI Dong, CHEN Jun, ZHU Qing. Oil-Gas Reservoir Evaluation Based on GIS[J]. Geomatics and Information Science of Wuhan University, 2004, 29(7): 592-596.
    [10]JIANG Fuzhen. Role of Gravimetry in Monitoring the Crustal Deformation of Three Gorges Reservoir Area[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 679-682.
  • Cited by

    Periodical cited type(6)

    1. 李惠民,彭紫薇,李相如. 气候变化下干旱对大别山区植被的影响研究. 治淮. 2024(12): 44-46 .
    2. 谢萍,张双喜,金涛勇,韦瑜,蔡剑锋,许晨. 武汉市GRACE水储量变化与气象干旱关联趋势分析. 排灌机械工程学报. 2023(06): 624-629 .
    3. 胡艳茹,梁丽娇,何立平,许文锋,刘正学,兰波. 三峡水库蓄水前后库区及周边区域降水变化及其影响因素. 地理研究. 2023(07): 1921-1940 .
    4. 肖家豪,张双喜,韦瑜,蔡剑锋,洪敏. 基于GPS垂向位移测定云南地区陆地水储量及其对累积降雨的响应机制. 测绘通报. 2022(01): 61-65 .
    5. 咬登魁,段功豪. 基于季节性SARIMA模型的武汉市长序列降雨量趋势分析与预测. 地下水. 2022(02): 166-168 .
    6. 谢萍,张双喜,周吕,李庆隆,肖家豪,蔡剑锋. 武汉市中心城区地表形变与洪涝灾害防治新策略. 武汉大学学报(信息科学版). 2021(07): 1015-1024 .

    Other cited types(7)

Catalog

    Article views (1766) PDF downloads (180) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return