Citation: | ZHANG Siqi, WANG Tao, HE Xiufeng, WAN Qichang. A Micro Ground-Based Interferometric Radar System for Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1801-1808. DOI: 10.13203/j.whugis20190474 |
[1] |
郑建雷, 黄杏. TS 60全站仪在船闸高边坡水平位移监测中的应用[J].测绘与空间地理信息, 2019, 42(7): 229-231 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dbch201907070
Zheng Jianlei, Huang Xing. Application of TS 60 Total Station in High Slope Horizontal Displacement Monitoring of Shiplock[J]. Geomatics and Spatial Information Technology, 2019, 42(7): 229-231 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dbch201907070
|
[2] |
李飞, 朱鸿鹄, 张诚成, 等.地基变形光纤光栅监测可行性的试验研究[J].浙江大学学报(工学版), 2017, 51(1): 204-211 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjdxxb-gx201701026
Li Fei, Zhu Honghu, Zhang Chengcheng, et al.Experimental Study on Feasibility of Fiber Bragg Grating-Based Foundation Deformation Monitoring[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(1): 204-211 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjdxxb-gx201701026
|
[3] |
Tasci L. Deformation Monitoring in Steel Arch Bridges Through Close-Range Photogrammetry and the Finite Element Method[J]. Experimental Techniques, 2015, 39(3): 3-10 doi: 10.1111/ext.12022
|
[4] |
熊春宝, 路华丽, 朱劲松, 等.基于GPS-RTK和加速度计的桥梁动态变形监测试验[J].振动与冲击, 2019, 38(12): 69-73 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdycj201912010
Xiong Chunbao, Lu Huali, Zhu Jinsong, et al. Dynamic Deformation Monitoring of Bridge Structures Based on GPS-RTK and Accelerometers[J]. Journal of Vibration and Shock, 2019, 38(12): 69-73 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdycj201912010
|
[5] |
Yang H, Omidalizarandi M, Xu X, et al. Terrestrial Laser Scanning Technology for Deformation Monitoring and Surface Modeling of Arch Structures[J]. Composite Structures, 2017, 169: 173-179 doi: 10.1016/j.compstruct.2016.10.095
|
[6] |
李兵权, 李永生, 姜文亮, 等.基于地基真实孔径雷达的边坡动态监测研究与应用[J].武汉大学学报·信息科学版, 2019, 44(7): 1 093-1 098 doi: 10.13203/j.whugis20190049
Li Bingquan, Li Yongsheng, Jiang Wenliang, et al. Research and Application of Slope Dynamic Monitoring Based on Ground-Based Real Aperture Radar[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1 093-1 098 doi: 10.13203/j.whugis20190049
|
[7] |
吴星辉, 马海涛, 张杰.地基合成孔径雷达的发展现状及应用[J].武汉大学学报·信息科学版, 2019, 44(7) : 1 073-1 081 doi: 10.13203/j.whugis20190058
Wu Xinghui, Ma Haitao, Zhang Jie. Development Status and Application of Ground-Based Synthetic Aperture Radar[J].Geomatics and Information Science of Wuhan University, 2019, 44(7) : 1 073-1 081 doi: 10.13203/j.whugis20190058
|
[8] |
Huang Q, Luzi G, Monserrat O, et al. Ground-based Synthetic Aperture Radar Interferometry for Deformation Monitoring: A Case Study at Geheyan Dam, China[J].Journal of Applied Remote Sensing, 2017, 11(3): 036030 http://adsabs.harvard.edu/abs/2017JARS...11c6030H
|
[9] |
闫国斌, 陶志刚, 孙光林, 等.边坡雷达在矿区边坡监测区域的应用分析[J].工业安全与环保, 2015, 41(10): 57-60 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gyaqyfc201510017
Yan Guobin, Tao Zhigang, Sun Guanglin, et al. Application Analysis of Slope Stability Radar in the Mine Slope Monitoring Risk Area[J]. Industrial Safety and Environmental Protection, 2015, 41(10): 57-60 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gyaqyfc201510017
|
[10] |
Rödelsperger S, Läufer G, Gerstenecker C, et al. Monitoring of Displacements with Ground-based Microwave Interferometry: IBIS-S and IBIS-L[J]. Journal of Applied Geodesy, 2010, 4(1): 41-54 http://adsabs.harvard.edu/abs/2010JAGeo...4...41R
|
[11] |
曾涛, 邓云开, 胡程, 等.地基差分干涉雷达发展现状及应用实例[J].雷达学报, 2019, 8(1): 154-170 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ldxb201901016
Zeng Tao, Deng Yunkai, Hu Cheng, et al.Development State and Application Examples of Ground-based Differential Interferometric Radar[J]. Journal of Radars, 2019, 8(1): 154-170 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ldxb201901016
|
[12] |
赵永波, 刘宏伟. MIMO雷达技术综述[J].数据采集与处理, 2018, 33(3): 389-399 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjcjycl201803001
Zhao Yongbo, Liu Hongwei. Overview on MIMO Radar[J]. Journal of Data Acquisition and Processing, 2018, 33(3): 389-399 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjcjycl201803001
|
[13] |
Zwanetski A, Kronauge M, Rohling H. Waveform Design for FMCW MIMO Radar Based on Frequency Division[C]. The 14th International Radar Symposium (IRS), Dresden, Germany, 2013
|
[14] |
江冰, 周腾, 唐玥.一种性价比高的TDM MIMO雷达系统设计和实验[J].现代雷达, 2017, 39(2): 61-65 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdld201702011
Jiang Bing, Zhou Teng, Tang Yao. Design and Experiment of a Cost-Effective TDM MIMO Radar System[J].Modem Radar, 2017, 39(2):61-65 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdld201702011
|
[15] |
洪伟, 余超, 陈继新, 等.毫米波与太赫兹技术[J].中国科学:信息科学, 2016, 46(8): 1 086-1 107 http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-PZKX201608009.htm
Hong Wei, Yu Chao, Chen Jixin, et al. Millimeter Wave and Terahertz Technology[J]. Science in China:Information Sciences, 2016, 46(8):1 086-1 107 http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-PZKX201608009.htm
|
[16] |
Ganis A, Navarro E M, Schoenlinner B, et al. A Portable 3D Imaging FMCW MIMO Radar Demonstrator with a 24×24 Antenna Array for Medium-Range Applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 56(1): 298-312 http://ieeexplore.ieee.org/document/8048534
|
[17] |
Huang Y, Brennan P V. FMCW Based MIMO Imaging Radar for Maritime Navigation[J]. Progress in Electromagnetics Research, 2011, 115: 327-342 doi: 10.2528/PIER11021509
|
[18] |
Dorp P V. LFMCW Based MIMO Imaging Processing with Keystone Transform[C]. European Radar Conference (EuRAD), Nuremberg, Germany, 2013
|
[19] |
Miralles E, Multerer T, Ganis A, et al. Multifunctional and Compact 3D FMCW MIMO Radar System with Rectangular Array for Medium-range Applications[J]. IEEE Aerospace and Electronic Systems Magazine, 2018, 33(4): 46-54 doi: 10.1109/MAES.2018.160277
|
[20] |
王伟, 马跃华, 王咸鹏.一种高运算效率的MIMO雷达BP成像算法[J].系统工程与电子技术, 2013, 35(10): 2 080-2 085 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xtgcydzjs201310011
Wang Wei, Ma Yuehua, Wang Xianpeng. High Computation Efficiency BP Imaging Algorithm for MIMO Radar[J]. Systems Engineering and Electronics, 2013, 35(10): 2 080-2 085 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xtgcydzjs201310011
|
[21] |
王怀军, 黄春琳, 陆珉, 等. MIMO雷达反向投影成像算法[J].系统工程与电子技术, 2010, 32(8): 1 567-1 573 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xtgcydzjs201008003
Wang Huaijun, Huang Chunlin, Lu Min, et al. Back Projection Imaging Algorithm for MIMO Radar[J]. Systems Engineering and Electronics, 2010, 32(8): 1 567-1 573 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xtgcydzjs201008003
|
[22] |
黄声享, 罗力, 何超.地面微波干涉雷达与GPS测定桥梁挠度的对比试验分析[J].武汉大学学报·信息科学版, 2012, 37(10): 1 173-1 176 http://ch.whu.edu.cn/article/id/334
Huang Shengxiang, Luo Li, He Chao. Comparative Test Analysis for Determining Bridge Deflection by Using Ground-Based SAR and GPS[J]. Geomatics and Information Science of Wuhan University, 2012, 37(10): 1 173-1 176 http://ch.whu.edu.cn/article/id/334
|
[1] | DU Yan, NING Lize, XIE Mowen, BAI Yunfei, LI Heng, JIA Beining. A Prediction Model of Landslide Displacement in Reservoir Area Considering Time Lag Effect[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1347-1355. DOI: 10.13203/j.whugis20220133 |
[2] | XIAO Ruya, HE Xiufeng. Deformation Monitoring of Reservoirs and Dams Using Time-Series InSAR[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1334-1341. DOI: 10.13203/j.whugis20170327 |
[3] | ZHANG Yan, LV Pinji, LIU Jia. Impact of the Yangtze River Three Gorges Reservoir on Fault Activity[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1497-1500. DOI: 10.13203/j.whugis20140983 |
[4] | HUANG Shengxiang, LUO Li. Stability Analysis and Results of the Landslide MonitoringDatum in the Three Gorges Reservoir Area[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 367-372. DOI: 10.13203/j.whugis20120019 |
[5] | WU Xueling, REN Fu, NIU Ruiqing. Spatial Intelligent Prediction of Landslide Hazard Based on Multi-source Data in Three Gorges Reservoir Area[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 963-968. |
[6] | HU Teng, DU Ruilin, ZHANG Zhenhua, WU Yue. Simulation and Mechanism Analysis on Crustal Vertically Deformation in Three Gorges Reservoir Area Under the Condition of Reservoir Impoundment[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 33-36. |
[7] | WU Tao, YAN Huiwu, TANG Guigang. Prediction on Time Series Analysis of Water Quality in Yangtze Gorges Reservoir Area[J]. Geomatics and Information Science of Wuhan University, 2006, 31(6): 500-502. |
[8] | DU Ruilin, QIAO Xuejun, YANG Shaomin, WANG Qi. Results of the Crustal Deformation by GPS Survey and Horizontal Strain Rate Fields in the Three Gorges Area[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 768-771. |
[9] | SHI Dong, CHEN Jun, ZHU Qing. Oil-Gas Reservoir Evaluation Based on GIS[J]. Geomatics and Information Science of Wuhan University, 2004, 29(7): 592-596. |
[10] | JIANG Fuzhen. Role of Gravimetry in Monitoring the Crustal Deformation of Three Gorges Reservoir Area[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 679-682. |