Citation: | ZHAO Yuanyuan, ZHU Jun, XIE Yakun, LI Weilian, GUO Yukun. A Real-Time Video Flame Detection Algorithm Based on Improved Yolo-v3[J]. Geomatics and Information Science of Wuhan University, 2021, 46(3): 326-334. DOI: 10.13203/j.whugis20190440 |
[1] |
Çelik T, Demirel H, Ozkaramanli H. Automatic Fire Detection in Video Sequences[C]. The 14th European Signal Processing Conference, Florence, Italy, 2006
|
[2] |
Çelik T, Demirel T. Fire Detection in Video Sequences Using a Generic Color Model[J]. Fire Safety Journal, 2009, 44(2): 147-158 http://www.sciencedirect.com/science/article/pii/S0379711208000568
|
[3] |
Pasquale F, Alessia S, Mario V. Real-Time Fire Detection for Video-Surveillance Applications Using a Combination of Experts Based on Color, Shape, and Motion[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(9): 1 545 - 1 556 doi: 10.1109/TCSVT.2015.2392531
|
[4] |
Ju H, Li W, Tighe S, et al. CrackU-Net: A Novel Deep Convolutional Neural Network for Pixelwise Pavement Crack Detection[J]. Structural Control and Health Monitoring, 2020, 27(8), DOI: 10.1002/stc.2551
|
[5] |
Sun W, Paiva A, Xu P, et al. Fault Detection and Identification Using Bayesian Recurrent Neural Networks[J]. Computers and Chemical Engineering, 2020, 141, DOI: 10.1016/j.compchemeng.2020.106991
|
[6] |
Rei S, Yuhei H, Ayako O. Non-destructive Detection of Tea Leaf Chlorophyll Content Using Hyperspectral Reflectance and Machine Learning Algorithms[J]. Plants, 2020, 9(3), DOI: 10.3390/plants9030368
|
[7] |
季顺平, 田思琦, 张驰. 利用全空洞卷积神经元网络进行城市土地覆盖分类与变化检测[J]. 武汉大学学报·信息科学版, 2020, 45(2): 233-241 doi: 10.13203/j.whugis20180481
Ji Shunping, Tian Siqi, Zhang Chi. Using All-Hole Convolutional Neural Network for Urban Land Cover Classification and Change Detection[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 233-241 doi: 10.13203/j.whugis20180481
|
[8] |
Chirra V, Uyyala S, Kolli V. Deep CNN: A Machine Learning Approach for Driver Drowsiness Detection Based on Eye State[J]. International Information and Engineering Technology Association, 2019, 33(6): 461-466 http://www.researchgate.net/publication/338251837_Deep_CNN_A_Machine_Learning_Approach_for_Driver_Drowsiness_Detection_Based_on_Eye_State
|
[9] |
胡涛, 朱欣焰, 呙维, 等. 融合颜色和深度信息的运动目标提取方法[J]. 武汉大学学报·信息科学版, 2019, 44(2): 276-282 doi: 10.13203/j.whugis20160535
Hu Tao, Zhu Xinyan, Guo Wei, et al. A Moving Object Detection Method Combining Color and Depth Data[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 276-282 doi: 10.13203/j.whugis20160535
|
[10] |
Kantorov V, Oquab M, Cho M, et al. Context LocNet: Context-Aware Deep Network Models for Weakly Supervised Localization[C]. European Conference on Computer Vision, Amsterdam, Netherlands, 2016
|
[11] |
Xie Y, Zhu J, Cao Y, et al. Refined Extraction of Building Outlines from High-Resolution Remote Sensing Imagery Based on a Multifeature Convolutional Neural Network and Morphological Filtering[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 1 842-1 855 doi: 10.1109/JSTARS.2020.2991391
|
[12] |
Mikolov T, Chen K, Corrado G, et al. Efficient Estimation of Word Representations in Vector Space[EB/OL]. (2013-09-07)[2019-09-25]. https://arxiv.org/abs/1301.3781
|
[13] |
Hinton E, Osindero S, Teh Y. A Fast Learning Algorithm for Deep Belief Nets[J]. Neural Computation, 2006, 18(7): 1 527-1 554 doi: 10.1162/neco.2006.18.7.1527
|
[14] |
Xie Y, Zhu J, Cao Y, et al. Efficient Video Fire Detection Exploiting Motion-Flicker-Based Dynamic Features and Deep Static Features[J]. IEEE Access, 2020, 8: 81 904 - 81 917 doi: 10.1109/ACCESS.2020.2991338
|
[15] |
Frizzi S, Kaabi R, Bouchouicha M, et al. Convolutional Neural Network for Video Fire and Smoke Detection[C]. Conference of the IEEE Industrial Electronics Society, Florence, Italy, 2016
|
[16] |
Zhang Q, Xu J, Xu L, et al. Deep Convolutional Neural Networks for Forest Fire Detection[C]. International Forum on Management, Education and Information Technology Application, Paris, France, 2016
|
[17] |
傅天驹, 郑嫦娥, 田野, 等. 复杂背景下基于深度卷积神经网络的森林火灾识别[J]. 计算机与现代化, 2016 (3): 52-57 http://www.cnki.com.cn/article/cjfdtotal-jyxh201603012.htm
Fu Tianju, Zheng Change, Tian Ye, et al. Forest Fire Recognition Based on Deep Convolutional Neural Network Under Complex Background[J]. Computer and Modernization, 2016 (3): 52-57 http://www.cnki.com.cn/article/cjfdtotal-jyxh201603012.htm
|
[18] |
Redmon J, Divvala S, Girshick R, et al. You Only Look Once: Unified, Real-Time Object Detection[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Lasvegas, USA, 2016
|
[19] |
Redmon J, Farhadi A. YOLO9000: Better, Faster, Stronger[C]. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017
|
[20] |
Redmon J, Farhadi A. YOLOv3: An Incremental Improvement[EB/OL]. (2018-04-08)[2019-09-25]. https://arxiv.org/abs/1804.02767
|
[21] |
陈垂雄, 严云洋, 刘以安, 等. 运动区域提取和闪频分析并行的火焰检测算法[J]. 数据采集与处理, 2017, 32(2): 424-430 http://www.cqvip.com/QK/96163X/201702/672013730.html
Chen Chuixiong, Yan Yunyang, Liu Yian, et al. Fire Detection Based on Parallel Computing of Motion and Flicker Frequency Feature[J]. Journal of Data Acquisition and Processing, 2017, 32(2): 424-430 http://www.cqvip.com/QK/96163X/201702/672013730.html
|
[22] |
Toulouse T, Rossi L, Campana A, et al. Computer Vision for Wildfire Research: An Evolving Image Dataset for Processing and Analysis[J]. Fire Safety Journal, 2017, 92: 188-194 doi: 10.1016/j.firesaf.2017.06.012
|
[23] |
Cetin A. Fire Detection Samples[EB/OL]. (2013-09-03)[2019-09-25]. http://Signal.ee.bilkent.edu.tr/VisiFire
|
[24] |
Steffens, Botelho S, Rodrigues R. A Texture Driven Approach for Visible Spectrum Fire Detection on Mobile Robots[C]. The XⅢ Latin American Robotics Symposium and IV Brazilian Robotics Symposium (LARS/SBR), Recife, Brazil, 2016
|