HUANG Zhengrui, PAN Miaoxin, CHEN Chongcheng, LI Bangxun, WEI Fenjuan. Data Collection and Transmission Technology for Emergency Environment Monitoring Based on Integration of LoRa and BDS[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4): 530-537. DOI: 10.13203/j.whugis20190207
Citation: HUANG Zhengrui, PAN Miaoxin, CHEN Chongcheng, LI Bangxun, WEI Fenjuan. Data Collection and Transmission Technology for Emergency Environment Monitoring Based on Integration of LoRa and BDS[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4): 530-537. DOI: 10.13203/j.whugis20190207

Data Collection and Transmission Technology for Emergency Environment Monitoring Based on Integration of LoRa and BDS

Funds: 

The National Key Research and Development Program of China 2017YFB0504202

More Information
  • Author Bio:

    HUANG Zhengrui, master, specializes in spatial data mining, internet of things and spatial information integration technology. E-mail: zhengruihuang@foxmail.com

  • Corresponding author:

    CHEN Chongcheng, PhD, professor. E-mail: chencc@fzu.edu.cn

  • Received Date: April 23, 2020
  • Published Date: April 04, 2021
  •   Objectives  The existed problems of post-disaster rapid emergency response system include the short communication distance between nodes in conventional wireless sensor networks, and the over-reliance on ground stations for front-end and back-end long-distance communication.
      Methods  The emergency environment monitoring system based on long range wireless transmission technology and BeiDou navigation satellite system (BDS) is designed and developed. The proposed system takes unmanned aerial vehicle as bearing platform of emergency devices, and the collected environmental parameters are transferred through the relay nodes to the gateway nodes equipped with BDS modules. Users can use the hand-held emergency terminal to acquire and receive the collected environmental monitoring data in real time.
      Results  The results show that the proposed system can realize real-time data collection and reliable transmission in different environments with the communication distance of 8 km. The packet loss rates of short message in urban area and in mountainous area are 7.450% and 18.395%, respectively.
      Conclusions  The proposed system has certain application value for complete or partial absence of conventional communication network.
  • [1]
    许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报·信息科学版, 2019, 44(7): 957-966 doi: 10.13203/j.whugis20190088

    Xu Qiang, Dong Xiujun, Li Weile. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geoha-zards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957-966 doi: 10.13203/j.whugis20190088
    [2]
    van den Abeele F, Haxhibeqiri J, Moerman I, et al. Scalability Analysis of Large-Scale LoRaWAN Networks in ns-3[J]. IEEE Internet of Things Journal, 2017, 4(6): 2 186-2 198 doi: 10.1109/JIOT.2017.2768498
    [3]
    Li L L, Ren J C, Zhu Q. On the Application of LoRa LPWAN Technology in Sailing Monitoring System[C]// The 13th Annual Conference on Wireless On-demand Network Systems and Services (WONS), Jackson, WY, USA, 2017
    [4]
    Haxhibeqiri J, van den Abeele F, Moerman I, et al. LoRa Scalability: A Simulation Model Based on Interference Measurements[J]. Sensors, 2017, 17(6): 1 193-1 194 doi: 10.3390/s17061193
    [5]
    Ojha T, Misra S, Raghuwanshi N S. Wireless Sensor Networks for Agriculture: The State-of-the-Art in Practice and Future Challenges[J]. Computers and Electronics in Agriculture, 2015, 118: 66-84 doi: 10.1016/j.compag.2015.08.011
    [6]
    刘强强, 马苗立, 翟宝蓉. 基于LoRa的大气环境监测系统[J]. 计量与测试技术, 2018, 45(5): 6-9 https://www.cnki.com.cn/Article/CJFDTOTAL-JLYS201805002.htm

    Liu Qiangqiang, Ma Miaoli, Zhai Baorong. Atmospheric Environment Monitoring System Based on LoRa[J]. Metrology and Measurement Technique, 2018, 45(5): 6-9 https://www.cnki.com.cn/Article/CJFDTOTAL-JLYS201805002.htm
    [7]
    金光, 高子航, 江先亮, 等. 基于低功耗广域网的海岛水产养殖环境监测系统研制[J]. 农业工程学报, 2018, 34(24): 184-191 doi: 10.11975/j.issn.1002-6819.2018.24.022

    Jin Guang, Gao Zihang, Jiang Xianliang, et al. Development of Island Aquaculture Environment Monitoring System Based on Low-Power Wide Area Networks[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(24): 184-191 doi: 10.11975/j.issn.1002-6819.2018.24.022
    [8]
    Lavric A, Popa V. Internet of Things and LoRa™ Low-Power Wide-Area Networks Challenges[C]// The 9th International Conference on Electronics, Compu-ters and Artificial Intelligence (ECAI), Targoviste, Romania, 2017
    [9]
    李成杰, 林辉, 臧卓. 基于北斗卫星的森林资源信息外业采集系统关键技术研究[J]. 中南林业科技大学学报, 2018, 38(1): 55-61 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNLB201801011.htm

    Li Chengjie, Lin Hui, Zang Zhuo. Research on Key Technologies of Forest Resource Information Collection System Based on BeiDou Satellite[J]. Journal of Central South University of Forestry & Technology, 2018, 38(1): 55-61 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNLB201801011.htm
    [10]
    郑一力, 赵燕东, 刘卫平, 等. 基于北斗卫星通信的林区小气候监测系统研究[J]. 农业机械学报, 2018, 49(2): 217-224 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201802028.htm

    Zheng Yili, Zhao Yandong, Liu Weiping, et al. Forest Microclimate Monitoring System Based on BeiDou Satellite[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 217-224 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201802028.htm
    [11]
    石小亚, 王占昌, 伍锦程. 北斗卫星技术在青海玉树地质灾害详查中的示范应用[J]. 地质力学学报, 2012, 18(3): 277-281 doi: 10.3969/j.issn.1006-6616.2012.03.009

    Shi Xiaoya, Wang Zhanchang, Wu Jincheng. Demonstration Application of BeiDou Satellite Technology in Detailed Geological Disaster Investigation in Yushu, Qinghai Province[J]. Journal of Geomechanics, 2012, 18(3): 277-281 doi: 10.3969/j.issn.1006-6616.2012.03.009
    [12]
    蔡文郁, 张鹏鹏, 张美燕. 基于LoRa通信的无线传感网低功耗节点设计[J]. 杭州电子科技大学学报(自然科学版), 2018, 38(2): 10-14 https://www.cnki.com.cn/Article/CJFDTOTAL-HXDY201802003.htm

    Cai Wenyu, Zhang Pengpeng, Zhang Meiyan. Design of Low-Power WSN Node Based on LoRa[J]. Journal of Hangzhou Dianzi University(Natural Sciences), 2018, 38(2): 10-14 https://www.cnki.com.cn/Article/CJFDTOTAL-HXDY201802003.htm
    [13]
    Georgiou O, Raza U. Low Power Wide Area Network Analysis: Can LoRa Scale?[J]. IEEE Wireless Communications Letters, 2017, 6(2): 162-165 doi: 10.1109/LWC.2016.2647247
    [14]
    Petäjäjärvi J, Mikhaylov K, Pettissalo M, et al. Performance of a Low-Power Wide-Area Network Based on LoRa Technology: Doppler Robustness, Scalability, and Coverage[J]. International Journal of Distributed Sensor Networks, 2017, 13(3): 1550147717699412 http://www.researchgate.net/publication/315119434_Performance_of_a_low-power_wide-area_network_based_on_LoRa_technology_Doppler_robustness_scalability_and_coverage
    [15]
    Adelantado F, Vilajosana X, Tuset-Peiro P, et al. Understanding the Limits of LoRaWAN[J]. IEEE Communications Magazine, 2017, 55(9): 34-40 doi: 10.1109/MCOM.2017.1600613
    [16]
    陈友荣, 王章权, 程菊花, 等. 基于最短路径树的优化生存时间路由算法[J]. 传感技术学报, 2012, 25(3): 406-412 doi: 10.3969/j.issn.1004-1699.2012.03.026

    Chen Yourong, Wang Zhangquan, Cheng Juhua, et al. Lifetime Optimized Routing Algorithm Based on Shortest Path Tree[J]. Chinese Journal of Sensors and Actuators, 2012, 25(3): 406-412 doi: 10.3969/j.issn.1004-1699.2012.03.026
    [17]
    李敬兆, 刘伟. 流量自适应LoRa网络防碰撞路由算法[J]. 传感器与微系统, 2018, 37(5): 147-150 https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201805042.htm

    Li Jingzhao, Liu Wei. Anti-Collision Routing Algorithm for Traffic Adaptive LoRa Network[J]. Transducer and Microsystem Technologies, 2018, 37(5): 147-150 https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201805042.htm
    [18]
    黄颖, 唐小明, 黄水生, 等. 林业野外巡护采集信息北斗短报文编码设计及应用[J]. 中南林业科技大学学报, 2014, 34(8): 106-110 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNLB201408023.htm

    Huang Ying, Tang Xiaoming, Huang Shuisheng, et al. BeiDou Short Message Encoding Design and Application for Collected Informationin Forestry Patrol[J]. Journal of Central South University of Forestry & Technology, 2014, 34(8): 106-110 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNLB201408023.htm
    [19]
    王春芳, 陈永涛, 李春来, 等. 基于北斗卫星的预警信息发布技术研究及实现[J]. 应用气象学报, 2014, 25(3): 375-384 https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX201403016.htm

    Wang Chunfang, Chen Yongtao, Li Chunlai, et al. Technology and Implementation of Warning Information Distribution Based on BeiDou Satellite[J]. Journal of Applied Meteorological Science, 2014, 25(3): 375-384 https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX201403016.htm
  • Related Articles

    [1]GAO Yang, SHA Hai, CHU Henglin, WANG Mengli. Non-ideality Characteristic Analysis and Receiver Design Constraints Recommendation for BDS B1C and B2a Signals[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 587-592. DOI: 10.13203/j.whugis20200568
    [2]LI Jianan, LI Yu, ZHAO Quanhua, JIANG Haonan, HONG Yong. SAR Image Absolute Radiometric Calibration Based on RCS Modeling of Communication Tower[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1746-1755. DOI: 10.13203/j.whugis20210052
    [3]XIE Ping, ZHANG Shuangxi, WANG Haihong, WU Tengfei, CAI Jianfeng. Cross Wavelet Analysis on the Influence of the Three Gorges Dam Impounding on the Reservoir Precipitation[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 821-829, 907. DOI: 10.13203/j.whugis20180410
    [4]YANG Jie, CHANG Yonglei, LI Pingxiang, ZHAO Lingli, SHI Lei. Distributed Targets Extraction for SAR Polarimetric Calibration Using Helix Scattering[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2023-2029. DOI: 10.13203/j.whugis20180180
    [5]XU Xiyu, WANG Zhenzhan, XU Ke. Application of Laser Tracking Technology to Absolute Calibration of Space-borne Radar Altimeters[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 103-108. DOI: 10.13203/j.whugis20140542
    [6]WENG Yinkan, LI Song, YANG Jinling, YI Hong, WANG Hong, MA Yue. Fast Solution to the RCS of Corner Reflector for the SAR Radiometric Calibration[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1551-1556. DOI: 10.13203/j.whugis20130613
    [7]LIAO Lu, LI Pingxiang, YANG Jie, CHANG Hong. An Improved Method to SAR Polarimetric Calibration Based on Reciprocity Judgement Using Distributed Target[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1042-1047. DOI: 10.13203/j.whugis20140096
    [8]JIN Taoyong, HU Minzhang, JIANG Tao, ZHANG Shoujian. Cross-Calibration and Errors Analysis of Ionosphere Correction in Satellite Altimetry[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 658-661.
    [9]WEN Xingping, HU Guangdao, YANG Xiaofeng. Cross Calibration of CBERS-02 CCD Image Based on the Pseudo-invariant Reflectance Targets[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 409-413.
    [10]SUN Zhongmiao, XIA Zheren, LI Yingchun. Cross-Coupling Correction for LaCoste&Romberg Airborne Gravimeter[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10): 883-886.
  • Cited by

    Periodical cited type(6)

    1. 严颂华,梅捷,陈永谦,陈璨. 地基GNSS-R公路边坡形变监测实验及误差分析. 武汉大学学报(信息科学版). 2024(01): 100-108 .
    2. 邓垦,周佩元,杜兰,蔡巍. 多系统单频紧组合GNSS-R测高方法. 武汉大学学报(信息科学版). 2024(01): 146-155 .
    3. 侯金华,贺凯飞,高凡,储倜,吴宇. 岸基BDS-R海面测高及其观测值加权方法. 北京航空航天大学学报. 2024(03): 1015-1026 .
    4. 张云,赵乐久,孟婉婷,秦瑾,盛志超,杨树瑚. 北斗卫星反射信号岸基海面高度反演精度的评估. 北京航空航天大学学报. 2023(05): 999-1008 .
    5. 桑文刚,刘迎春,何秀凤,王昭然. 库区GNSS-R精细化反演水面高度及其验证研究. 全球定位系统. 2022(01): 43-48 .
    6. 邢进,刘思琦,王峰,张国栋,俞永庆,王林峰. 岸基GNSS-R海洋遥感系统设计与实现. 无线电工程. 2021(10): 1104-1109 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return