WEI Xuemei. Estimation of Forest Aboveground Biomass Based on Multi-source Data[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1385-1390. DOI: 10.13203/j.whugis20190149
Citation: WEI Xuemei. Estimation of Forest Aboveground Biomass Based on Multi-source Data[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1385-1390. DOI: 10.13203/j.whugis20190149

Estimation of Forest Aboveground Biomass Based on Multi-source Data

Funds: 

Anhui Provincial Funds for Geographical Situation Monitoring of 2017 201788

More Information
  • Author Bio:

    WEI Xuemei, master, senior engineer, specializes in basic geospatial data for constructing public geographic information service platform and geography national condition monitoring. E-mail:1394609345@qq.com

  • Received Date: April 07, 2019
  • Published Date: September 04, 2019
  • Taking Landsat8 OLI(operational land imager) as the remote sensing data source, the secondary survey of forest resources and the census of geographical conditions as the main supplementary data, this paper carries out the inversion and estimation of aboveground biomass (AGB).Taking the natural forest in Jinzhai county, Anhui province as the research object, the quantitative inversion model of AGB is established by calculating the spectral, texture and topographic features of Landsat8 OLI covering the study area.By using the second class survey of forest resources, the general survey of geographical conditions and field survey data, the influence of different features on AGB estimation is analyzed.Experimental results show that the relative error between the measured value and the estimated value of the optimal inversion model is 0.708 718 and root mean square error is 1.318 983 based on the forest aboveground biomass obtained by the method adopted in this paper.According to the model, the total biomass of Jinzhai county is 4 723 728 530 t, and the results are in line with the actual situation.The quantitative inversion of AGB and the land method adopted in this study are available for large-scale monitoring of forest resources.
  • [1]
    郝泷, 刘华, 陈永富, 等.耦合光谱、纹理信息的森林蓄积量估算研究[J].山地学报, 2017, 35(2):246-254 http://d.old.wanfangdata.com.cn/Periodical/sdxb201702015

    Hao Shuang, Liu Hua, Chen Yongfu, et al. Remote Sensing Estimation of Forest Growing Stock Volume Based on Spectral and Texture Information[J]. Journal of Mountain Science, 2017, 35(2):246-254 http://d.old.wanfangdata.com.cn/Periodical/sdxb201702015
    [2]
    李德仁, 王长委, 胡月明, 等.遥感技术估算森林生物量的研究进展[J].武汉大学学报·信息科学版, 2012, 37(6):631-635 http://ch.whu.edu.cn/CN/abstract/abstract236.shtml

    Li Deren, Wang Changwei, Hu Yueming, et al. General Review on Remote Sensing-Based Biomass Estimation[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6):631-635 http://ch.whu.edu.cn/CN/abstract/abstract236.shtml
    [3]
    杨毅柠, 宋微.国土调查中的遥感目视解译与矢量化方法研究[J].环境保护与循环经济, 2009, 29(10):20-23 doi: 10.3969/j.issn.1674-1021.2009.10.008

    Yang Yining, Song Wei. Remote Sensing Visual Interpretation and Vectorization Method in National Land Survey[J]. Liaoning Urban and Rural Environmental Science & Technology, 2009, 29(10):20-23 doi: 10.3969/j.issn.1674-1021.2009.10.008
    [4]
    王铭烽.金寨县土地利用格局与突然侵蚀特征[D].泰安: 山东农业大学, 2014

    Wang Mingfeng. Land Use Pattern and Sudden Erosion Characteristics in Jinzhai County[D]. Tai'an: Shandong Agricultural University, 2014
    [5]
    Franklin S E, Hall R J, Moskal L M, et al. Incorporating Texture into Classification of Forest Species Composition from Airborne Multispectral Images[J]. International Journal of Remote Sensing, 2000, 21(1):61-79 doi: 10.1080/014311600210993
    [6]
    Hyyppa J, Hyyppa H, Inkinen M, et al. Accuracy Comparison of Various Remote Sensing Data Sources in the Retrieval of Forest Stand Attributes[J]. Forest Ecology and Management, 2000, 128(1/2):109-120 http://cn.bing.com/academic/profile?id=129f38418bf654a6c2181e4c2c83d855&encoded=0&v=paper_preview&mkt=zh-cn
    [7]
    刘彬, 张友水.Landsat-8与ZY-3卫星影像降尺度地表温度反演及分析[J].遥感信息, 2018, 33(4):28-34 doi: 10.3969/j.issn.1000-3177.2018.04.005

    Liu Bin, Zhang Youshui. Retrieval and Analysis of Downscaling Land Surface Temperature Based on Landsat-8 and ZY-3 Satellite Imagery[J].Remote Sensing Information, 2018, 33(4):28-34 doi: 10.3969/j.issn.1000-3177.2018.04.005
    [8]
    Dekker R J. Texture Analysis and Classification of ERS SAR Images for Map Updating of Urban Areas in the Netherlands[J]. IEEE Transactions on GeoScience and Remote Sensing, 2003, 41(9):1950-1958 doi: 10.1109/TGRS.2003.814628
    [9]
    Lu D. Aboveground Biomass Estimation Using Landsat TM Data in the Brazilian Amazon[J]. International Journal of Remote Sensing, 2005, 26(12):2509-2525 doi: 10.1080/01431160500142145
    [10]
    Bastin J F, Barbier N, Couteron P, et al. Aboveground Biomass Mapping of African Forest Mosaics Using Canopy Texture Analysis:Toward a Regional Approach[J]. Ecological Application, 2014, 24(8):1984-2001 doi: 10.1890/13-1574.1
    [11]
    薛薇.统计分析与SPSS的应用[M].北京:中国人民大学出版社, 2011

    Xue Wei. Statistical Analysis and Application of SPSS[M].Beijing:China Renmin University Press, 2011
    [12]
    郝泷.基于Landsat OLI的西藏林芝县森林类型提取方法和蓄积量反演模型研究[D].北京: 中国林业科学研究院, 2017

    Hao Shuang. Forest Type Extraction Method and Volume Inversion Model Based on Landsat OLI in Linzhi County, Tibet[D]. Beijing: Chinese Academy of Forestry, 2017
    [13]
    段祝庚, 赵旦, 曾源, 等.基于遥感的区域尺度森林地上生物量估算研究[J].武汉大学学报·信息科学版, 2015, 40(10):1400-1408 http://ch.whu.edu.cn/CN/abstract/abstract3355.shtml

    Duan Zhugeng, Zhao Dan, Zeng Yuan, et al. Estimation of the Forest Aboveground Biomass at Regional Scale Based on Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10):1400-1408 http://ch.whu.edu.cn/CN/abstract/abstract3355.shtml
    [14]
    李路, 常亚鹏, 许仲林.乌鲁木齐南山森林生物量和碳储量空间分布特征[J].水土保持研究, 2018, 25(5):72-77 http://d.old.wanfangdata.com.cn/Periodical/stbcyj201805012

    Li Lu, Chang Yapeng, Xu Zhonglin. Spatial Distribution Characteristics of Forest Biomass and Carbon Storage in Nanshan Mountain of Urumqi[J]. Research of Soil and Water Conservation, 2018, 25(5):72-77 http://d.old.wanfangdata.com.cn/Periodical/stbcyj201805012
    [15]
    方精云, 陈安平, 赵淑清, 等.中国森林生物量的估算:对Fang等Science一文(Science, 2001, 291:2320-2322)的若干说明[J].植物生态学报, 2002, 26(2):243-249 doi: 10.3321/j.issn:1005-264X.2002.02.018

    Fang Jingyun, Chen Anping, Zhao Shuqing, et al. Estimating Biomass Carbon of China's Forests:Supplementary Notes on Report Published in Science (291:2320-2322)by Fang, et al.(2001)[J]. Acta Phytoecologica Sinica, 2002, 26(2):243-249 doi: 10.3321/j.issn:1005-264X.2002.02.018
    [16]
    胡建全, 徐志扬.安徽省森林碳储量及碳密度特征研究[J].林业调查规划, 2018, 43(3):6-9, 33 doi: 10.3969/j.issn.1671-3168.2018.03.002

    Hu Jianquan, Xu Zhiyang. Storage and Density Characteristics of Forest Carbon in Anhui Province[J]. Forest Inventory and Planning, 2018, 43(3):6-9, 33 doi: 10.3969/j.issn.1671-3168.2018.03.002
  • Related Articles

    [1]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [2]LIU Zhiqiang, YUE Dongjie, WANG Hu, ZHENG Dehua. An Approach for Real-Time GPS/GLONASS Satellite Clock Estimation with GLONASS Code Inter-Frequency Biases Compensation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1209-1215. DOI: 10.13203/j.whugis20150542
    [3]RUAN Rengui, WU Xianbing, FENG Laiping. Comparison of Observation Models and Ionospheric Elimination Approaches for Single Frequency Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1023-1028.
    [4]ZOU Xuan, JIANG Weiping, SU Lina, LIU Jingnan. A New Single-Frequency PPP Method Using Dynamic Reference Network[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 403-407.
    [5]TU Rui, HUANG Guanwen, ZHANG Qin, WANG Li. PPP Algorithm of Single Frequency Based on Corrections of Single-base Station and Ionospheric Parameters Estimation[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2): 170-173.
    [6]TU Rui, HUANG Guanwen, ZHANG Qin, WANG Li. The Research of Dual Frequency Solution Method for Single Frequency Precise Point Positioning(PPP) Based on SEID Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1187-1190.
    [7]SHI Chuang, GU Shengfeng, GENG Changjiang, SONG Weiwei. High-Precision Single-Frequency Point Positioning with Randomness of Ionosphere Delay Correction in Consideration[J]. Geomatics and Information Science of Wuhan University, 2011, 36(7): 807-810.
    [8]LIU Jihua, OU Jikun, SUN Baoqi, ZHONG Shiming. The GEO Satellite Precise Orbit Determination Based on Inter-satellite Single Difference Method[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 24-28.
    [9]SONG Weiwei, SHI Chuang, YAO Yibin, YE Shirong. Ionosphere Delay Processing Methods and Positioning Precision of Single Frequency Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 778-781.
    [10]ZHANG Xiaohong, LI Xingxing, GUO Fei, ZHANG Ming. Realization and Precision Analysis of Single-Frequency Precise Point Positioning Software[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8): 783-787.
  • Cited by

    Periodical cited type(11)

    1. 段博文,白征东,郭锦萍. 北斗二号卫星伪距偏差分析与建模. 测绘工程. 2024(02): 18-27 .
    2. 高扬,沙海,楚恒林,王梦丽. 北斗B1C、B2a信号非理想性分析及接收约束建议. 武汉大学学报(信息科学版). 2023(04): 587-592 .
    3. 耿涛,李钟兴,谢新,马壮,赵齐乐. GNSS接收机伪距偏差确定方法及其对定位的影响. 武汉大学学报(信息科学版). 2023(07): 1134-1145 .
    4. 周中华,万祥,程艳,刘志忠,汪文君,张雪丽. 一种地基GNSS接收机差分码偏差估算方法. 空间科学学报. 2022(01): 170-178 .
    5. 许海林,周恩泽,童梦想,鄂盛龙,田翔,罗颖婷. GPS/BDS/Galileo单点定位精度分析. 测绘地理信息. 2022(04): 19-24 .
    6. 李浩东,赵齐乐,陶钧,龙宇浩. 北斗三号卫星FCB估计及其模糊度固定. 武汉大学学报(信息科学版). 2022(09): 1439-1446 .
    7. 慕仁海,党亚民,许长辉. BDS-3新频点单点定位研究. 测绘通报. 2021(03): 12-17 .
    8. 毛飞宇,龚晓鹏,辜声峰,王琛琛,楼益栋. 北斗三号卫星导航信号接收机端伪距偏差建模与验证. 测绘学报. 2021(04): 457-465 .
    9. 徐宗秋,丁新展,徐彦田,唐龙江,李磊,胡艳阳. BDS静态精密单点定位模糊度固定解精度分析. 测绘科学. 2019(07): 30-34 .
    10. 李森,周命端,陈积旭. 北斗数据工程控制网应用实验及精度分析. 测绘科学. 2019(09): 1-6 .
    11. 唐卫明,刘前,高柯夫,邓辰龙,崔健慧,沈明星. 北斗伪距码偏差对基线解算的影响分析. 武汉大学学报(信息科学版). 2018(08): 1199-1206 .

    Other cited types(13)

Catalog

    Article views (1654) PDF downloads (261) Cited by(24)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return