CHEN Tao, ZHONG Ziying, NIU Ruiqing, LIU Tong, CHEN Shengyun. Mapping Landslide Susceptibility Based on Deep Belief Network[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1809-1817. DOI: 10.13203/j.whugis20190144
Citation: CHEN Tao, ZHONG Ziying, NIU Ruiqing, LIU Tong, CHEN Shengyun. Mapping Landslide Susceptibility Based on Deep Belief Network[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1809-1817. DOI: 10.13203/j.whugis20190144

Mapping Landslide Susceptibility Based on Deep Belief Network

Funds: 

The National Natural Science Foundation of China 61601418

The National Natural Science Foundation of China 62071439

the Opening Foundation of Qilian Mountain National Park Research Center (Qinghai) GKQ2019-01

the Opening Foundation of Hunan Engineering and Research Center of Natural Resource Investigation and Monitoring 2020-5

the Opening Foundation of Geomatics Technology and Application Key Laboratory of Qinghai Province QHDX-2019-01

More Information
  • Author Bio:

    CHEN Tao, PhD, associate professor, specializes in remote sensing geology, and hyperspectral remote sensing information processing. E-mail: taochen@cug.edu.cn

  • Received Date: March 26, 2019
  • Published Date: November 18, 2020
  •   Objectives  Landslides are very harmful natural geological phenomenon.They are widely developed in mountainous areas in China, especially the Three Gorges Reservoir area. At present, more than 3 800 landslides have been reported. However, it is difficult to evaluate the landslide susceptibility and improve the accuracy of the model for areas with the same/similar geological background scientifically and accurately. The main objective of this study is to produce landslide susceptibility maps for the Guojiaba Town of Zigui County at the Three Gorges area, China by using deep belief network (DBN) method, and to explore its application effect in landslide susceptibility mapping.
      Methods  The landslide susceptibility mapping method is DBN. It is a superposition of multiple restricted Boltzmann machines (RBMs), which can better reflect the relationship among factors in order to obtain better results. Firstly, multi-source data is used to extract the factors affecting the landslide development in the study area. By analyzing the correlation between each factor and historical landslides, 12 evaluation factors that have a large impact on landslide development are selected, and they are quantified and normalized. Then, the grid unit is selected as the smallest unit for landslide susceptibility mapping, and the obtained sample units are selected and divided. 30% of all landslide data and the same amount of non-landslide data is selected randomly to form a training sample set. 70% of all landslide data and the same amount of non-landslide data as the validation sample set; third, the obtained training sample set is input to the deep belief network for training, and the validation sample set is used for model verification. In order to test the stability of the proposed model, with the same sample and parameter settings, five experiments are carried out. Finally, the same training set and validation set are used to evaluate the landslide susceptibility using shallow neural networks and logistic regression models.The results of the three methods are evaluated by using ROC(receiver opera- ting characteristics) curve, OA (overall accuracy) and Kappa coefficient.
      Results  The proposed DBN model is used to calculate based on the evaluation units in the study area, and the probability values corresponding to the evaluation units are obtained. The susceptibility of landslides in the study area is divided into four classes which are non-prone, low-prone, moderate-prone and high-prone area. The zonation map of landslide susceptibility based on DBN is obtained. From the results of the stability test of DBN, the average accuracy of DBN constructed in the mapping of landslide susceptibility is 91.14%, and the mean square error is 1.94%, which proves that the method has better performance of stability. By comparing with the mapping results obtained by the shallow neural network and logistic regression model, it is found that DBN has higher accuracy on the three evaluation indexes of ROC curve, OA and Kappa coefficient, which are 0.95, 90% and 0.81, followed by the shallow neural network model, of which are 0.92, 88%, and 0.76. The accuracies of logistic regression model are the lowest, of which are 0.86, 78%, and 0.55, respectively.
      Conclusions  A DBN is used to quantitatively mapping the landslide susceptibility in Guojiaba Town, Zigui County, the Three Gorges Reservoir area, and a regional landslide susceptibility map is generated.Compared with the shallow neural network and traditional logistic regression method, the accuracy assessment of the results is performed using three accuracy evaluation indexes, which are the receiver's working characteristic curve, OA, and Kappa coefficient. The results show that DBN obtains good stability, and the area under the curve, OA, and Kappa values are the highest among the three models, indicating that DBN performs a good predictive ability and stability in the mapping of landslide susceptibility.
  • [1]
    黄润秋, 许强.中国典型灾难性滑坡[M].北京:科学出版社, 2008

    Huang Runqiu, Xu Qiang. China Typical Catastrophic Landslide[M]. Beijing: Science Press, 2008
    [2]
    陆会燕, 李为乐, 许强, 等.光学遥感与InSAR结合的金沙江白格滑坡上下游滑坡隐患早期识别[J].武汉大学学报·信息科学版, 2019, 44(9): 1 342-1 354 doi: 10.13203/j.whugis20190086

    Lu Huiyan, Li Weile, Xu Qiang, et al. Early Detection of Landslides in the Upstream and Downstream Areas of the Baige Landslide, the Jinsha River Based on Optical Remote Sensing and InSAR Technologies[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1 342-1 354 doi: 10.13203/j.whugis20190086
    [3]
    唐尧, 王立娟, 马国超, 等.基于"高分+"的金沙江滑坡灾情监测与应用前景分析[J].武汉大学学报·信息科学版, 2019, 44(7):1 082-1 092 doi: 10.13203/j.whugis20190048

    Tang Yao, Wang Lijuan, Ma Guochao, et al. Disaster Monitoring and Application Prospect Analysis of the Jinsha River Landslide Based on "Gaofen+"[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1 082-1 092 doi: 10.13203/j.whugis20190048
    [4]
    刘渊博, 牛瑞卿, 于宪煜, 等.旋转森林模型在滑坡易发性评价中的应用研究[J].武汉大学学报·信息科学版, 2018, 43(6): 959-964 doi: 10.13203/j.whugis20160132

    Liu Yuanbo, Niu Ruiqing, Yu Xianyu, et al. Application of the Rotation Forest Model in Landslide Susceptibility Assessment[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 959-964 doi: 10.13203/j.whugis20160132
    [5]
    Chen W, Xie X, Peng J, et al. GIS-Based Landslide Susceptibility Evaluation Using a Novel Hybrid Integration Approach of Bivariate Statistical Based Random Forest Method[J]. Catena, 2018, 164: 135-149 doi: 10.1016/j.catena.2018.01.012
    [6]
    刘坚, 李树林, 陈涛.基于优化随机森林模型的滑坡易发性评价[J].武汉大学学报·信息科学版, 2018, 43(7): 1 085-1 091 doi: 10.13203/j.whugis20160515

    Liu Jian, Li Shulin, Chen Tao.Landslide Susceptibility Assessment Based on Optimized Random Forest Model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1 085-1 091 doi: 10.13203/j.whugis20160515
    [7]
    Pham B T, Bui D T, Dholakia M B, et al. A Comparative Study of Least Square Support Vector Machines and Multiclass Alternating Decision Trees for Spatial Prediction of Rainfall-Induced Landslides in a Tropical Cyclones Area[J]. Geotechnical and Geological Engineering, 2016, 34(6): 1 807-1 824 doi: 10.1007/s10706-016-9990-0
    [8]
    Shirzadi A, Bui D T, Pham B T, et al. Shallow Landslide Susceptibility Assessment Using a Novel Hybrid Intelligence Approach[J]. Environmental Earth Sciences, 2017, DOI: 10.1007/s12665-017-6558-0
    [9]
    Tsangaratos P, Ilia I. Comparison of a Logistic Regression and Naïve Bayes Classifier in Landslide Susceptibility Assessments: The Influence of Models Complexity and Training Dataset Size[J]. Catena, 2016, 145: 164-179 doi: 10.1016/j.catena.2016.06.004
    [10]
    Chen W, Xie X, Peng J, et al. GIS-Based Landslide Susceptibility Modelling: A Comparative Assessment of Kernel Logistic Regression, Naïve-Bayes Tree, and Alternating Decision Tree Models[J]. Geomatics, Natural Hazards and Risk, 2017, 8(2): 950-973 doi: 10.1080/19475705.2017.1289250
    [11]
    Wang L J, Guo M, Sawada K, et al. A Comparative Study of Landslide Susceptibility Maps Using Logistic Regression, Frequency Ratio, Decision Tree, Weights of Evidence and Artificial Neural Network[J]. Geosciences Journal, 2016, 20: 117-136 doi: 10.1007/s12303-015-0026-1
    [12]
    Bui D T, Tuan T A, Klempe H, et al. Spatial Prediction Models for Shallow Landslide Hazards: A Comparative Assessment of the Efficacy of Support Vector Machines, Artificial Neural Networks, Kernel Logistic Regression, and Logistic Model Tree[J]. Landslides, 2016, 13(2): 361-378 doi: 10.1007/s10346-015-0557-6
    [13]
    Hong H, Pradhan B, Jebur M N, et al. Spatial Prediction of Landslide Hazard at the Luxi Area (China) Using Support Vector Machines[J]. Environmental Earth Sciences, 2016, DOI: 10.1007/s12665-015-4866-9
    [14]
    Peng L, Niu R, Huang B, et al. Landslide Susceptibility Mapping Based on Rough Set Theory and Support Vector Machines: A Case of the Three Gorges Area, China[J]. Geomorphology, 2014, 204: 287-301 doi: 10.1016/j.geomorph.2013.08.013
    [15]
    Wu X, Niu R, Ren F, et al. Landslide Susceptibility Mapping Using Rough Sets and Back-Propagation Neural Networks in the Three Gorges, China[J]. Environmental Earth Sciences, 2013, 70(3): 1 307-1 318 doi: 10.1007/s12665-013-2217-2
    [16]
    Chen W, Pourghasemi H R, Zhao Z. A GIS-Based Comparative Study of Dempster-Shafer, Logistic Regression, and Artificial Neural Network Models for Landslide Susceptibility Mapping[J]. Geocarto International, 2017, 32(4): 367-385 doi: 10.1080/10106049.2016.1140824
    [17]
    Tian Y Y, Xu C, Hong H Y, et al. Mapping Earthquake-Triggered Landslide Susceptibility by Use of Artificial Neural Network(ANN) Models:An Example of the 2013 Minxian (China) Mw 5.9 Event[J]. Geomatics, Natural Hazards and Risk, 2019, 10(1): 1-25 doi: 10.1080/19475705.2018.1487471
    [18]
    Andrieu C, Freitas N D, Doucet A, et al. An Introduction to MCMC for Machine Learning[J]. Machine Learning, 2003, 50(1-2): 5-43 http://www.tandfonline.com/servlet/linkout?suffix=cit0002&dbid=16&doi=10.1080%2F00273171.2018.1428892&key=10.1023%2FA%3A1020281327116
    [19]
    Wang Y, Fang Z C, Hong H Y. Comparison of Convolutional Neural Networks for Landslide Susceptibility Mapping in Yanshan County, China[J]. Science of the Total Environment, 2019, 666: 975-993 doi: 10.1016/j.scitotenv.2019.02.263
    [20]
    Hinton G E, Salakhutdinov R R. Reducing the Dimensionality of Data with Neural Networks[J].Science, 2006, 313(5 786): 504-507 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4bf28668b4ac9aa4374f7393e37d2e9d
    [21]
    Lee H, Ekanadham C, Ng A Y. Sparse Deep Belief Net Model for Visual Area V2[C]. The 21st Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2007
    [22]
    Nair V, Hinton G E. 3D Object Recognition with Deep Belief Nets[C]. The 23rd Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2009
    [23]
    Sarikaya R, Hinton G E, Ramabhadran B. Deep Belief Nets for Natural Language Call-Routing[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Prague, Czech, Republic, 2011
    [24]
    李景富, 牛瑞卿.基于GIS的斜坡结构图自动化制图方法研究[J].人民长江, 2009, 40(19): 38-40 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rmcj200919013

    Li Jingfu, Niu Ruiqing. Research on Automatic Drawing Method for Structural Drawings of Slope Based on GIS[J]. Yangtze River, 2009, 40(19): 38-40 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rmcj200919013
    [25]
    地质矿产部编写组.长江三峡工程库岸稳定性研究[M].北京:地质出版社, 1988

    Compilation Team of Ministry of Geology and Mineral Resources. Unstability Problems of the Slope Along Yangtze River in the Region of the Three Gorges Project[M]. Beijing: Geological Publishing House, 1988
    [26]
    《长江三峡工程重大地质与地震问题研究》编写组.长江三峡工程重大地质与地震问题研究[M].北京:地质出版社, 1992

    Compilation Team of Research on Major Geological and Seismic Problems of the Three Gorges Project of the Yangtze River. Research on Major Geological and Seismic Problems of the Three Gorges Project of the Yangtze River[M]. Beijing: Geological Publishing House, 1992
    [27]
    刘广润, 晏鄂川, 练操.论滑坡分类[J].工程地质学报, 2002, 10(4): 339-342 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb200204001

    Liu Guangrun, Yan Echuan, Nian Chao. Discussion on Classification of Landslides[J]. Journal of Engineering Geology, 2002, 10(4): 339-342 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb200204001
    [28]
    Páez A, Wheeler D C. Geographically Weighted Regression[J]. International Encyclopedia of Human Geography, 2009, 47(1): 407-414
    [29]
    Pike R J. The Geometric Signature: Quantifying Landslide-Terrain Types from Digital Elevation Models[J]. Mathematical Geology, 1988, 20(5): 491-511 doi: 10.1007/BF00890333
    [30]
    Montgomery D R, Dietrich W E. A Physically Based Model for the Topographic Control on Shallow Landsliding[J]. Water Resources Research, 1994, 30(4): 1 153-1 171 doi: 10.1029/93WR02979
    [31]
    Chowdhury R N, Zhang S. Modelling the Risk of Progressive Slope Failure: A New Approach[J]. Reliability Engineering & System Safety, 1993, 40(1): 17-30 http://www.sciencedirect.com/science/article/pii/095183209390115F
    [32]
    彭令, 牛瑞卿, 陈丽霞. GIS支持下三峡库区秭归县滑坡灾害空间预测[J].地理研究, 2010, 29(10): 1 889-1 898 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlyj201010017

    Peng Ling, Niu Ruiqing, Chen Lixia. Landslide Hazard Spatial Prediction in Zigui County of the Three Gorges Reservoir Area Based on GIS[J]. Geographical Research, 2010, 29(10): 1 889-1 898 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlyj201010017
    [33]
    李军, 周成虎.基于栅格GIS滑坡风险评价方法中格网大小选取分析[J].遥感学报, 2003, 7(2): 86-92 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygxb200302002

    Li Jun, Zhou Chenghu. Appropriate Grid Size for Terrain Based Landslide Risk Assessment in Lantau Island, Hong Kong[J]. Journal of Remote Sensing, 2003, 7(2): 86-92 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygxb200302002
  • Cited by

    Periodical cited type(24)

    1. 张萌萌,李少达,王潇,李欣玥,戴可人. 基于机器学习和编码器耦合的滑坡易发性评价. 河南理工大学学报(自然科学版). 2025(02): 69-80 .
    2. 王悦,曹颖,许方党,周超,余蓝冰,吴立星,汪洋,殷坤龙. 考虑非滑坡样本选取和集成机器学习方法的水库滑坡易发性预测. 地球科学. 2024(05): 1619-1635 .
    3. 陈力,丁雨淋,朱庆,曾浩炜,张利国,刘飞. 基于元学习的广域范围滑坡易发性小样本预测. 武汉大学学报(信息科学版). 2024(08): 1367-1376 .
    4. 洪浩源,王德生,朱阿兴. 面向机器学习型区域滑坡易发性评价的训练样本采样方法. 地理学报. 2024(07): 1718-1736 .
    5. 严国强,唐章英,宋超,郑雪,张雨萌. 基于INLA-SPDE方法的区域滑坡易发性分析. 绿色科技. 2024(18): 245-251 .
    6. 田尤,高波,殷红,李元灵,张佳佳,陈龙,李洪梁. 滑坡易发性评价中样本不均衡问题处理研究. 水文地质工程地质. 2024(06): 171-181 .
    7. 马敏,王江立,陈琦,李景富. 基于随机森林赋权信息量的区域滑坡易发性评价——以三峡库区秭归至巴东段为例. 华南地质. 2024(04): 749-763 .
    8. 郑景莹,谈树成,王超,杨贵忠,江龙. 基于CF-PCCs模型的维西县滑坡致灾因子敏感性分析. 云南大学学报(自然科学版). 2023(02): 369-378 .
    9. 李佳春,孟祥瑞,胡顺忠,杨勇,第宝锋. 震后滑坡易发性评价及其时效性研究. 西华师范大学学报(自然科学版). 2023(03): 269-278 .
    10. 任瑞斌,李丽敏,王莲霞,崔成涛,符振涛. 基于PSO-LSSVM的广西花岗岩分布区滑坡易发性评价. 国外电子测量技术. 2023(05): 157-162 .
    11. 牟家琦,庄建琦,王世宝,孔嘉旭,杜晨辉. 基于深度神经网络模型的雅安市滑坡易发性评价. 中国地质灾害与防治学报. 2023(03): 157-168 .
    12. 张紫昭,张天栋,于喜坤,吕倩俐,赖润森,贾竣予,刘新宇. 新疆崩滑流地质灾害孕灾环境分区及其形成机制. 工程地质学报. 2023(04): 1129-1144 .
    13. 解明礼,巨能攀,赵建军,范强,何朝阳. 多因子组合的地质灾害易发性空间精度验证. 中国地质灾害与防治学报. 2023(05): 10-19 .
    14. 杨得虎,朱杰勇,刘帅,马博,代旭升. 罗平县崩滑易发性评价模型对比研究. 地质灾害与环境保护. 2023(04): 41-49 .
    15. 张钟远,邓明国,徐世光,张云波,付弘流,李忠海. 镇康县滑坡易发性评价模型对比研究. 岩石力学与工程学报. 2022(01): 157-171 .
    16. 李艳,金会军,温智,赵子龙,金晓颖. 多年冻土区斜坡稳定性研究综述. 冰川冻土. 2022(01): 203-216 .
    17. 李齐荣,苗则朗,陈帅,李珂,蒲明辉. 基于多模态分类模型的芦山地震滑坡易发性评价. 长江科学院院报. 2022(05): 63-70 .
    18. 王逸兮,廖荣涛,叶宇轩,王晟玮,刘芬. 基于深度信念神经网络的用户用能需求多线程预测模型. 电子设计工程. 2022(11): 126-130 .
    19. 安亚鹏,张芮,张国信,刘兴荣,刘迪,高江平. 舟曲县滑坡危险区划分及典型滑坡危险性研究. 水利规划与设计. 2022(09): 101-105+137+163 .
    20. 蔡新伟. 基于模糊聚类SVM的崩塌易发性评价研究——以安泽县为例. 测绘技术装备. 2022(03): 36-42 .
    21. 杨波,高伏芳,罗志强,朱荣华,马浩翔. 基于大理市地质灾害易发性评价方法研究. 中国水运(下半月). 2022(10): 125-126+131 .
    22. 黄发明,陈佳武,范宣梅,黄劲松,周创兵. 降雨型滑坡时间概率的逻辑回归拟合及连续概率滑坡危险性建模. 地球科学. 2022(12): 4609-4628 .
    23. 杨波,高伏芳,罗志强,朱荣华,马浩翔. 基于大理市地质灾害易发性评价方法研究. 中国水运. 2022(20): 125-126+131 .
    24. 黄发明,曹昱,范宣梅,李文彬,黄劲松,周创兵,范文彦. 不同滑坡边界及其空间形状对滑坡易发性预测不确定性的影响规律. 岩石力学与工程学报. 2021(S2): 3227-3240 .

    Other cited types(18)

Catalog

    Article views (1229) PDF downloads (245) Cited by(42)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return