ZHONG Zhen, ZHANG Teng, DUAN Lian, LI Yi, ZHU Huaqiang. Estimation of the Size and Composition of the Lunar Core Based on the Gravity Field Model GL1500E and LLR Physical Libration Parameters[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 238-243. DOI: 10.13203/j.whugis20190124
Citation: ZHONG Zhen, ZHANG Teng, DUAN Lian, LI Yi, ZHU Huaqiang. Estimation of the Size and Composition of the Lunar Core Based on the Gravity Field Model GL1500E and LLR Physical Libration Parameters[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 238-243. DOI: 10.13203/j.whugis20190124

Estimation of the Size and Composition of the Lunar Core Based on the Gravity Field Model GL1500E and LLR Physical Libration Parameters

Funds: 

The National Natural Science Foundation of China 41864001

the Open Fund of State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University 17P03

Guizhou Science and Technology Plan Project Guizhou Science and Technology Platform Talents [2018]5769

the Open Fund of Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education 2015K03

More Information
  • Author Bio:

    ZHONG Zhen, PhD, professor, specializes in application of lunar gravity field model and lunar interior structure. E-mail: zhenzhongmail@163.com

  • Received Date: November 02, 2019
  • Published Date: February 04, 2021
  • The lunar core is stratified into an outer core and an inner core. They can be estimated according to the second degree of gravity field model and selenophysical libration parameters from lunar laser ranging (LLR). We use the high-resolution lunar gravity field model GL1500E to evaluate the size and density of lunar core, which are inversed through a nonlinear particle swarm optimization. A large number of inversion indicates that, the outer diameter of the outer core is about 469 km with a corresponding density of 4 613 kg/m3, the radius of the inner core is around 303 km with a corresponding density of 7 004 kg/m3 and the density of mantle surrounds 3 340 kg/m3, which is quite close to the geological value of 3 360 kg/m3. The radii of inner core and outer core are quite close to other recent studies as well. The size and density of the lunar core found here can be therefore meaningful. If the lunar core is composed of pure iron and ferrous sulfide, our study shows that the inner core is mainly composed of pure iron whereas the outer core is largely composed of ferrous sulfide.
  • [1]
    欧阳自远.月球科学概论[M].北京:中国宇航出版社, 2005

    Ouyang Ziyuan. Introduction to Lunar Science[M]. Beijing: China Aerospace Publishing House, 2005
    [2]
    朱丹, 王世杰, 朱成明.岩浆洋分异与月壳[J].地球化学, 2010, 39(1): 63-72 doi: 10.3969/j.issn.1007-2802.2010.01.010

    Zhu Dan, Wang Shijie, Zhu Chengming. Differentiation of the Lunar Magma Ocean and Formation of the Lunar Crust[J]. Geochimica, 2010, 39(1): 63-72 doi: 10.3969/j.issn.1007-2802.2010.01.010
    [3]
    欧阳自远, 李春来, 邹永廖, 等.绕月探测工程科学应用研究进展[J].中国科学院院刊, 2009, 24(5): 530-536 doi: 10.3969/j.issn.1000-3045.2009.05.010

    Ouyang Ziyuan, Li Chunlai, Zou Yongliao, et al. Progress of Scientific Application and Research of China's Circumlunar Exploration Program[J]. Bulletin of Chinese Academy of Sciences, 2009, 24(5): 530-536 doi: 10.3969/j.issn.1000-3045.2009.05.010
    [4]
    Namiki N, Iwata T, Matsumoto K, et al. Farside Gravity Field of the Moon from Four-Way Doppler Measurements of SELENE (Kaguya)[J]. Science, 2009, 323(5 916): 900-905
    [5]
    Zuber M T, Smith D E, Neumann G A, et al. Gravity Field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) Mission[J]. Science, 2013, 339(6 120): 668-671
    [6]
    Khan A, Pommier A, Neumann G A, et al. The Lunar Moho and the Internal Structure of the Moon: A Geophysical Perspective[J]. Tectonophysics, 2013, 609: 331-352 doi: 10.1016/j.tecto.2013.02.024
    [7]
    Weber R C, Lin P Y, Garnero E J, et al. Seismic Detection of the Lunar Core[J]. Science, 2011, 331(6 015): 309-312
    [8]
    Yan J G, Xu L Y, Li F, et al. Lunar Core Structure Investigation: Implication of GRAIL Gravity Field Model[J]. Advances in Space Research, 2015, 55(6): 1 721-1 727
    [9]
    Sohl F, Schubert G, Spohn T. Geophysical Constraints on the Composition and Structure of the Martian Interior[J]. Journal of Geophysical Research, 2005, 110(E12008): 1-8
    [10]
    钟振, 李斐, 鄢建国, 等.利用重力/地形导纳和岩石圈单一薄层模型的月球物理参数反演[J].武汉大学学报·信息科学版, 2014, 39(12): 1 487-1 492 http://ch.whu.edu.cn/article/id/3146

    Zhong Zhen, Li Fei, Yan Jianguo, et al. Application of Gravity/Topography Admittance to the Inversion of Lunar Geophysical Parameters Considering the Lithosphere as a Thin Elastic Spherical Shell[J]. Geomatics and Information Science of Wuhan University, 2014, 39(12): 1 487-1 492 http://ch.whu.edu.cn/article/id/3146
    [11]
    Zhong Z, Yan J G, Rodriguez J A P, et al. Ancient Selenophyiscal Structure of the Grimaldi Basin: Constraints from GRAIL Gravity and LOLA Topography[J]. ICARUS, 2018, 309: 411-421 doi: 10.1016/j.icarus.2017.11.030
    [12]
    Park R S, Konopliv A S, Yuan D N, et al. A High-Resolution Spherical Harmonic Degree 1 500 Lunar Gravity Field from the GRAIL Mission[C]. American Geophysical Union Fall Meeting, San Francisco, USA, 2015
    [13]
    叶茂, 李斐, 鄢建国, 等. GRAIL月球重力场模型定轨性能分析[J].武汉大学学报·信息科学版, 2016, 41(1): 93-99 doi: 10.13203/j.whugis20150008

    Ye Mao, Li Fei, Yan Jianguo, et al. Orbit Determination Ability Analysis of the GRAIL Gravity Model[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 93-99 doi: 10.13203/j.whugis20150008
    [14]
    Mohr P J, Taylor B N, Newell D B. CODATA Recommended Values of the Fundamental Physical Constants: 2010[J]. Journal of Physical and Chemical Reference Data, 2012, 41(4): 043109 doi: 10.1063/1.4724320
    [15]
    Folkner W M, Williams J G, Boggs D H, et al. The Planetary and Lunar Ephemerides DE430 and DE431[J]. Interplanetary Network Progress Report, 2014, 196: 1-81
    [16]
    Matsumoto K, Yamada R, Kikuchi F, et al. Internal Structure of the Moon Inferred from Apollo Seismic Data and Selenodetic Data from GRAIL and LLR[J]. Geophysical Research Letters, 2015, 42(18): 7 351-7 358 doi: 10.1002/2015GL065335
    [17]
    Bills B G. Discrepant Estimates of Moments of Inertia of the Moon[J]. Journal of Geophysical Research, 1995, 100(E12): 26 297-26 303 doi: 10.1029/95JE03100
    [18]
    Yan J G, Goossens S, Matsumoto K, et al. CEGM02: An Improved Lunar Gravity Model Using Chang'E-1 Orbital Tracking Data[J]. Planetary and Space Science, 2012, 62(1): 1-9 doi: 10.1016/j.pss.2011.11.010
    [19]
    Wieczorek M A. Localized Spectral Analysis on the Sphere[J]. Geophysical Journal of the Royal Astronomical Society, 2005, 162(3): 655-675 doi: 10.1111/j.1365-246X.2005.02687.x
    [20]
    王家映.地球物理反演理论[M].北京:高等教育出版社, 2002

    Wang Jiaying. Inverse Theory in Geophysics[M]. Beijing: Higher Education Press, 2002
    [21]
    Eberhart R C, Kennedy J. A New Optimizer Using Particles Swarm Theory[C]. The 6th International Symposium on Micro Machine and Human Science, Piscataway, USA, 1995
    [22]
    Kennedy J, Eberhart R. Particle Swarm Optimization[C]. IEEE International Conference on Neural Networks, Piscataway, USA, 1995
    [23]
    Harada Y, Goossens S, Matsumoto K, et al. Strong Tidal Heating in an Ultralow-Viscosity Zone at the Core-Mantle Boundary of the Moon[J]. Nature Geoscience, 2014, 7(8): 569-572 doi: 10.1038/ngeo2211
    [24]
    Harada Y, Goossens S, Matsumoto K, et al. The Deep Lunar Interior with a Low-Viscosity Zone: Revised Constraints from Recent Geodetic Parameters on the Tidal Response of the Moon[J]. ICARUS, 2016, 276: 96-101 doi: 10.1016/j.icarus.2016.04.021
    [25]
    Garcia R F, Gagnepain-Beyneix J, Chevrot S, et al. Very Preliminary Reference Moon Model[J]. Physics of the Earth and Planetary Interiors, 2011, 188(1-2): 96-113 doi: 10.1016/j.pepi.2011.06.015
    [26]
    Kuskov O L, Kronrod V A, Hood L L. Geochemical Constraints on the Seismic Properties of the Lunar Mantle [J]. Physics of the Earth and Planetary Interiors, 2002, 134(3): 175-189
  • Cited by

    Periodical cited type(3)

    1. 钟振,文麒麟,梁金福. 应用重力场模型二阶位系数及新近岁差率约束火星内核大小及密度组成. 物理学报. 2023(02): 386-392 .
    2. 文麒麟,钟振. 应用模拟退火算法估算月核大小及其密度组成. 物理学报. 2023(08): 347-353 .
    3. 魏二虎,任晓斌,刘经南,李连艳,聂桂根,李岩林. 利用VLBI观测量对月球天平动参数解算及着陆器定位和测速的改进. 武汉大学学报(信息科学版). 2022(04): 483-491 .

    Other cited types(1)

Catalog

    Article views (810) PDF downloads (78) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return