Citation: | XIE Jiayi, SUN Huabo, WANG Chun, LU Binbin. Analysis of Influence Factors for Unstable Approach in Fine⁃Grained Scale[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1201-1208. DOI: 10.13203/j.whugis20190120 |
[1] |
杜红兵, 李珍香. 进近着陆运输飞行事故原因及预防对策研究[J]. 中国安全科学学报, 2006, 16(6): 118-122 doi: 10.3969/j.issn.1003-3033.2006.06.022
Du Hongbing, Li Zhenxiang. Cause Analysis on Approach-and-Landing Loss Accidents and Their Countermeasures[J]. China Safety Science Journal, 2006, 16(6): 118-122 doi: 10.3969/j.issn.1003-3033.2006.06.022
|
[2] |
陈亚青, 孙宏. 进近管制员工作进程分类及工作负荷研究[J]. 中国安全科学学报, 2006, 16(2): 65-68 doi: 10.3969/j.issn.1003-3033.2006.02.013
Chen Yaqing, Sun Hong. Study on Classification of Work Processes and Workload of Approaching Controller[J]. China Safety Science Journal, 2006, 16(2): 65-68 doi: 10.3969/j.issn.1003-3033.2006.02.013
|
[3] |
霍志勤, 罗帆. 近十年中国民航事故及事故征候的统计分析[J]. 中国安全科学学报, 2006, 16(12): 65-71 doi: 10.3969/j.issn.1003-3033.2006.12.013
Huo Zhiqin, Luo Fan. Statistic Analysis on Accidents and Incidents in the Last Decade in China Civil Aviation[J]. China Safety Science Journal, 2006, 16(12): 65-71 doi: 10.3969/j.issn.1003-3033.2006.12.013
|
[4] |
刘方正, 范国磊, 马龙骧. 微下冲气流对飞机着陆性能的影响[J]. 海军航空工程学院学报, 2013(6): 639-642 https://www.cnki.com.cn/Article/CJFDTOTAL-HJHK201306012.htm
Liu Fangzheng, Fan Guolei, Ma Longxiang. Influence of Micro-Downburst on Aircraft Landing Performance[J]. Journal of Naval Aeronautical and Astronautical University, 2013(6): 639-642 https://www.cnki.com.cn/Article/CJFDTOTAL-HJHK201306012.htm
|
[5] |
周长春, 胡栋栋. 基于灰色聚类方法的航空公司飞机进近着陆阶段安全性评估[J]. 中国安全生产科学技术, 2012, 8(7): 99-102 https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201207023.htm
Zhou Changchun, Hu Dongdong. Safety Assessment of Aircraft During Approach Landing Stage Based on Grey Clustering Method[J]. Journal of Safety Science and Technology, 2012, 8(7): 99-102 https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201207023.htm
|
[6] |
郭媛媛, 孙有朝, 李龙彪, 等. 民用飞机进近着陆阶段灾难事故类型预测[J]. 航空计算技术, 2016, 16(4): 31-34 doi: 10.3969/j.issn.1671-654X.2016.04.008
Guo Yuanyuan, Sun Youchao, Li Longbiao, et al. Prediction of Catastrophic Accident Types of Civil Aircraft at Approach and Landing Phases[J]. Aeronautical Computing Technique, 2016, 16(4): 31-34 doi: 10.3969/j.issn.1671-654X.2016.04.008
|
[7] |
Hanifa A, Akbar S. Detection of Unstable Approaches in Flight Track with Recurrent Neural Network[C]// International Conference on Information and Communications Technology, Yogyakarta, Indonesia, 2018
|
[8] |
Wang Z, Sherry L, Shortle J F. Feasibility of Using Historical Flight Track Data to Nowcast Unstable Approaches[C]// Integrated Communications Navigation and Surveillance, Herndon, VA, USA, 2016
|
[9] |
王超, 郭九霞, 沈志鹏. 基于基本飞行模型的4D航迹预测方法[J]. 西南交通大学学报, 2009, 44(2): 295-300 doi: 10.3969/j.issn.0258-2724.2009.02.028
Wang Chao, Guo Jiuxia, Shen Zhipeng. Prediction of 4D Trajectory Based on Basic Flight Models[J]. Journal of Southwest Jiaotong University, 2009, 44(2): 295-300 doi: 10.3969/j.issn.0258-2724.2009.02.028
|
[10] |
Wang L, Wu C, Sun R. An Analysis of Flight Quick Access Recorder (QAR) Data and Its Applications in Preventing Landing Incidents[J]. Reliability Engineering and System Safety, 2014, 127: 86-96 doi: 10.1016/j.ress.2014.03.013
|
[11] |
Wang Q, Wu K, Zhang T, et al. Aerodynamic Modeling and Parameter Estimation from QAR Data of an Airplane Approaching a High-Altitude Airport[J]. Chinese Journal of Aeronautics, 2012, 25(3): 361-371 doi: 10.1016/S1000-9361(11)60397-X
|
[12] |
耿宏, 揭俊. 基于QAR数据的飞机巡航段燃油流量回归模型[J]. 航空发动机, 2008, 34(4): 46-50 https://www.cnki.com.cn/Article/CJFDTOTAL-HKFJ200804015.htm
Geng Hong, Jie Jun. Fuel Flow Regression Model of Aircraft Cruise Based on QAR Data[J]. Aeroengine, 2008, 34(4): 46-50 https://www.cnki.com.cn/Article/CJFDTOTAL-HKFJ200804015.htm
|
[13] |
Brunsdon C, Fotheringham A S, Charlton M. Geographically Weighted Summary Statistics: A Framework for Localised Exploratory Data Analysis[J]. Computers, Environment and Urban Systems, 2002, 26(6): 501-524 doi: 10.1016/S0198-9715(01)00009-6
|
[14] |
Tobler W R. A Computer Movie Simulating Urban Growth in the Detroit Region[J]. Economic Geography, 1970, 46(2): 234-240 http://www.bioone.org/servlet/linkout?suffix=i1100-9233-18-5-711-b43&dbid=16&doi=10.1658%2F1100-9233(2007)18[711%3AUSOAPI]2.0.CO%3B2&key=10.2307%2F143141
|
[15] |
Gollini I, Lu B, Charlton M, et al. GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models[J]. Journal of Statistical Software, 2014, 63(17), DOI: 10.18637/jss.v063.i17
|
[16] |
Lu B, Harris P, Charlton M, et al. The GWmodel R Package: Further Topics for Exploring Spatial Heterogeneity Using Geographically Weighted Models[J]. Geo-Spatial Information Science, 2014, 17(2): 85-101 http://d.wanfangdata.com.cn/Periodical/dqkjxxkxxb-e201402002
|
[17] |
Brunsdon C, Fotheringham A S, Charlton M E. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity[J]. Geographical Analysis, 1996, 28(4): 281-298 doi: 10.1111/j.1538-4632.1996.tb00936.x/abstract
|
[18] |
Nakaya T, Fotheringham A S, Brunsdon C, et al. Geographically Weighted Poisson Regression for Disease Association Mapping[J]. Statistics in Medicine, 2005, 24(17): 2 695-2 717 http://injuryprevention.bmj.com/lookup/external-ref?access_num=16118814&link_type=MED&atom=
|
[19] |
Atkinson P M, German S E, Sear D A, et al. Exploring the Relations Between Riverbank Erosion and Geomorphological Controls Using Geographically Weighted Logistic Regression[J]. Geographical Analysis, 2003, 35(1): 58-82 http://www.tandfonline.com/servlet/linkout?suffix=cit0001&dbid=16&doi=10.1080%2F15568318.2017.1422301&key=10.1111%2Fj.1538-4632.2003.tb01101.x
|
[1] | GUO Wenfei, ZHU Mengmeng, GU Shengfeng, ZUO Hongming, CHEN Jinxin. GNSS Precise Time-Frequency Receiver Clock Steering Model and Parameter Design Method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1126-1133. DOI: 10.13203/j.whugis20220458 |
[2] | SUN Leyuan, YANG Jun, GUO Xiye, HUANG Wende. Frequency Performance Evaluation of BeiDou-3 Satellite Atomic Clocks[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20200486 |
[3] | WU Yiwei, YANG Bin, XIAO Shenghong, WANG Maolei. Atomic Clock Models and Frequency Stability Analyses[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1226-1232. DOI: 10.13203/j.whugis20180058 |
[4] | AN Xiangdong, CHEN Hua, JIANG Weiping, XIAO Yugang, ZHAO Wen. GLONASS Ambiguity Resolution Method Based on Long Baselines and Experimental Analysis[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 690-698. DOI: 10.13203/j.whugis20170091 |
[5] | LI Mingzhe, ZHANG Shaocheng, HU Youjian, HOU Weizhen. Comparison of GNSS Satellite Clock Stability Based on High Frequency Observations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1490-1495, 1503. DOI: 10.13203/j.whugis20160537 |
[6] | WANG Ning, WANG Yupu, LI Linyang, ZHAI Shufeng, LV Zhiping. Stability Analysis of the Space-borne Atomic Clock Frequency for BDS[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1256-1263. DOI: 10.13203/j.whugis20150806 |
[7] | LIU Zhiqiang, YUE Dongjie, WANG Hu, ZHENG Dehua. An Approach for Real-Time GPS/GLONASS Satellite Clock Estimation with GLONASS Code Inter-Frequency Biases Compensation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1209-1215. DOI: 10.13203/j.whugis20150542 |
[8] | HUANG Guanwen, YU Hang, GUO Hairong, ZHANG Juqing, FU Wenju, TIAN Jie. Analysis of the Mid-long Term Characterization for BDS On-orbit Satellite Clocks[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 982-988. DOI: 10.13203/j.whugis20140827 |
[9] | MAO Yue, CHEN Jianpeng, DAI Wei, JIA Xiaolin. Analysis of On-board Atomic Clock Stability Influences[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1182-1186. |
[10] | GUO Hairong, YANG Yuanxi. Analyses of Main Error Sources on Time-Domain Frequency Stability for Atomic Clocks of Navigation Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 218-221. |