XIE Jiayi, SUN Huabo, WANG Chun, LU Binbin. Analysis of Influence Factors for Unstable Approach in Fine⁃Grained Scale[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1201-1208. DOI: 10.13203/j.whugis20190120
Citation: XIE Jiayi, SUN Huabo, WANG Chun, LU Binbin. Analysis of Influence Factors for Unstable Approach in Fine⁃Grained Scale[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1201-1208. DOI: 10.13203/j.whugis20190120

Analysis of Influence Factors for Unstable Approach in Fine⁃Grained Scale

Funds: 

The National Natural Science Foundation of China U1833201

More Information
  • Author Bio:

    XIE Jiayi, master, specializes in spatial statistics and geographically weighted models.JiayiXie@whu.edu.cn

  • Corresponding author:

    LU Binbin, PhD, associate professor. E-mail: binbinlu@whu.edu.cn

  • Received Date: November 19, 2019
  • Published Date: August 04, 2021
  •   Objectives  Unstable approach is one of the most important risks that threatens the flight safety during the descending phase, and is affected by factors such as meteorological and topographical that have strong spatial heterogeneity.
      Methods  In this article, we use the big data of quick access recorder (QAR) that collected by China Academy of Civil Aviation Science and Technology (CAST) to detect the unstable approach happening in Airbus and Boeing aircrafts in January 2018, and utilize exploratory spatial data analysis methods to explore the spatial patterns and relative influencing factors. In addition, Pearson correlation coefficient and geographically weighted correlation coefficient are used to investigate the pair-wise relationships between unstable approach and factors.
      Results  Experimental results show that unstable approaches of different aircraft types are distinctive in spatial distributions, and unstable approach of same aircraft type spatially varies in different regions in China. Besides, the correlation description in the fine-grained scale is better than in the global scale.
      Conclusions  This study provides an important research basis and guidance for the future quantitative cause analysis, which is significant for avoiding such risks.
  • [1]
    杜红兵, 李珍香. 进近着陆运输飞行事故原因及预防对策研究[J]. 中国安全科学学报, 2006, 16(6): 118-122 doi: 10.3969/j.issn.1003-3033.2006.06.022

    Du Hongbing, Li Zhenxiang. Cause Analysis on Approach-and-Landing Loss Accidents and Their Countermeasures[J]. China Safety Science Journal, 2006, 16(6): 118-122 doi: 10.3969/j.issn.1003-3033.2006.06.022
    [2]
    陈亚青, 孙宏. 进近管制员工作进程分类及工作负荷研究[J]. 中国安全科学学报, 2006, 16(2): 65-68 doi: 10.3969/j.issn.1003-3033.2006.02.013

    Chen Yaqing, Sun Hong. Study on Classification of Work Processes and Workload of Approaching Controller[J]. China Safety Science Journal, 2006, 16(2): 65-68 doi: 10.3969/j.issn.1003-3033.2006.02.013
    [3]
    霍志勤, 罗帆. 近十年中国民航事故及事故征候的统计分析[J]. 中国安全科学学报, 2006, 16(12): 65-71 doi: 10.3969/j.issn.1003-3033.2006.12.013

    Huo Zhiqin, Luo Fan. Statistic Analysis on Accidents and Incidents in the Last Decade in China Civil Aviation[J]. China Safety Science Journal, 2006, 16(12): 65-71 doi: 10.3969/j.issn.1003-3033.2006.12.013
    [4]
    刘方正, 范国磊, 马龙骧. 微下冲气流对飞机着陆性能的影响[J]. 海军航空工程学院学报, 2013(6): 639-642 https://www.cnki.com.cn/Article/CJFDTOTAL-HJHK201306012.htm

    Liu Fangzheng, Fan Guolei, Ma Longxiang. Influence of Micro-Downburst on Aircraft Landing Performance[J]. Journal of Naval Aeronautical and Astronautical University, 2013(6): 639-642 https://www.cnki.com.cn/Article/CJFDTOTAL-HJHK201306012.htm
    [5]
    周长春, 胡栋栋. 基于灰色聚类方法的航空公司飞机进近着陆阶段安全性评估[J]. 中国安全生产科学技术, 2012, 8(7): 99-102 https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201207023.htm

    Zhou Changchun, Hu Dongdong. Safety Assessment of Aircraft During Approach Landing Stage Based on Grey Clustering Method[J]. Journal of Safety Science and Technology, 2012, 8(7): 99-102 https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201207023.htm
    [6]
    郭媛媛, 孙有朝, 李龙彪, 等. 民用飞机进近着陆阶段灾难事故类型预测[J]. 航空计算技术, 2016, 16(4): 31-34 doi: 10.3969/j.issn.1671-654X.2016.04.008

    Guo Yuanyuan, Sun Youchao, Li Longbiao, et al. Prediction of Catastrophic Accident Types of Civil Aircraft at Approach and Landing Phases[J]. Aeronautical Computing Technique, 2016, 16(4): 31-34 doi: 10.3969/j.issn.1671-654X.2016.04.008
    [7]
    Hanifa A, Akbar S. Detection of Unstable Approaches in Flight Track with Recurrent Neural Network[C]// International Conference on Information and Communications Technology, Yogyakarta, Indonesia, 2018
    [8]
    Wang Z, Sherry L, Shortle J F. Feasibility of Using Historical Flight Track Data to Nowcast Unstable Approaches[C]// Integrated Communications Navigation and Surveillance, Herndon, VA, USA, 2016
    [9]
    王超, 郭九霞, 沈志鹏. 基于基本飞行模型的4D航迹预测方法[J]. 西南交通大学学报, 2009, 44(2): 295-300 doi: 10.3969/j.issn.0258-2724.2009.02.028

    Wang Chao, Guo Jiuxia, Shen Zhipeng. Prediction of 4D Trajectory Based on Basic Flight Models[J]. Journal of Southwest Jiaotong University, 2009, 44(2): 295-300 doi: 10.3969/j.issn.0258-2724.2009.02.028
    [10]
    Wang L, Wu C, Sun R. An Analysis of Flight Quick Access Recorder (QAR) Data and Its Applications in Preventing Landing Incidents[J]. Reliability Engineering and System Safety, 2014, 127: 86-96 doi: 10.1016/j.ress.2014.03.013
    [11]
    Wang Q, Wu K, Zhang T, et al. Aerodynamic Modeling and Parameter Estimation from QAR Data of an Airplane Approaching a High-Altitude Airport[J]. Chinese Journal of Aeronautics, 2012, 25(3): 361-371 doi: 10.1016/S1000-9361(11)60397-X
    [12]
    耿宏, 揭俊. 基于QAR数据的飞机巡航段燃油流量回归模型[J]. 航空发动机, 2008, 34(4): 46-50 https://www.cnki.com.cn/Article/CJFDTOTAL-HKFJ200804015.htm

    Geng Hong, Jie Jun. Fuel Flow Regression Model of Aircraft Cruise Based on QAR Data[J]. Aeroengine, 2008, 34(4): 46-50 https://www.cnki.com.cn/Article/CJFDTOTAL-HKFJ200804015.htm
    [13]
    Brunsdon C, Fotheringham A S, Charlton M. Geographically Weighted Summary Statistics: A Framework for Localised Exploratory Data Analysis[J]. Computers, Environment and Urban Systems, 2002, 26(6): 501-524 doi: 10.1016/S0198-9715(01)00009-6
    [14]
    Tobler W R. A Computer Movie Simulating Urban Growth in the Detroit Region[J]. Economic Geography, 1970, 46(2): 234-240 http://www.bioone.org/servlet/linkout?suffix=i1100-9233-18-5-711-b43&dbid=16&doi=10.1658%2F1100-9233(2007)18[711%3AUSOAPI]2.0.CO%3B2&key=10.2307%2F143141
    [15]
    Gollini I, Lu B, Charlton M, et al. GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models[J]. Journal of Statistical Software, 2014, 63(17), DOI: 10.18637/jss.v063.i17
    [16]
    Lu B, Harris P, Charlton M, et al. The GWmodel R Package: Further Topics for Exploring Spatial Heterogeneity Using Geographically Weighted Models[J]. Geo-Spatial Information Science, 2014, 17(2): 85-101 http://d.wanfangdata.com.cn/Periodical/dqkjxxkxxb-e201402002
    [17]
    Brunsdon C, Fotheringham A S, Charlton M E. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity[J]. Geographical Analysis, 1996, 28(4): 281-298 doi: 10.1111/j.1538-4632.1996.tb00936.x/abstract
    [18]
    Nakaya T, Fotheringham A S, Brunsdon C, et al. Geographically Weighted Poisson Regression for Disease Association Mapping[J]. Statistics in Medicine, 2005, 24(17): 2 695-2 717 http://injuryprevention.bmj.com/lookup/external-ref?access_num=16118814&link_type=MED&atom=
    [19]
    Atkinson P M, German S E, Sear D A, et al. Exploring the Relations Between Riverbank Erosion and Geomorphological Controls Using Geographically Weighted Logistic Regression[J]. Geographical Analysis, 2003, 35(1): 58-82 http://www.tandfonline.com/servlet/linkout?suffix=cit0001&dbid=16&doi=10.1080%2F15568318.2017.1422301&key=10.1111%2Fj.1538-4632.2003.tb01101.x
  • Cited by

    Periodical cited type(37)

    1. 罗斌,刘文豪,吴进,韩嘉福,吴文周,李洪省. 从地理信息系统到地理智能体. 地球信息科学学报. 2025(01): 83-99 .
    2. 王培晓,张恒才,张岩,程诗奋,张彤,陆锋. 地理空间智能预测研究进展与发展趋势. 地球信息科学学报. 2025(01): 60-82 .
    3. 王行风,陈国良. 地理知识图谱辅助的煤矿区生态损伤智慧识别研究. 地球信息科学学报. 2025(02): 367-380 .
    4. 张岸,朱俊锴. 新一代人工智能驱动下地图学研究的机遇与挑战. 地球信息科学学报. 2024(01): 35-45 .
    5. 刘康. 人类移动数据生成方法:研究进展与趋势探讨. 地球信息科学学报. 2024(04): 831-847 .
    6. 闾国年,袁林旺,陈旻,张雪英,周良辰,俞肇元,罗文,乐松山,吴明光. 地理信息学科发展的思考. 地球信息科学学报. 2024(04): 767-778 .
    7. 吴田军,骆剑承,李曼嘉,张静,赵馨,胡晓东,左进,闵帆,王玲玉,黄启厅. 地理时空数字化底座理论框架构建与应用实践. 地球信息科学学报. 2024(04): 799-830 .
    8. 王宇君,郭健,徐立,李宗明,李可欣. 利用深度森林进行船舶类型分类识别. 测绘科学技术学报. 2024(04): 425-432+440 .
    9. 邬伦,侯远樵,刘瑜. 大数据的6种地理学应用范式. 测绘学报. 2024(08): 1465-1479 .
    10. 石岩,王达,邓敏,杨学习. 时空异常探测:从数据驱动到知识驱动的内涵转变与实现路径. 测绘学报. 2024(08): 1493-1504 .
    11. 杨开先,甄峰. 地理学视角下城市空间智能化研究进展与思考. 地理科学. 2024(07): 1166-1177 .
    12. 李洁,王继周,毛曦,路文娟. 基于语义编码的自然语言时空问句语义理解. 测绘科学. 2024(11): 197-206 .
    13. 刘瑜,汪珂丽,邢潇月,郭浩,张维昱,罗琴瑶,高松,黄舟,李海峰,李新,王姣娥,王劲峰,朱递. 地理分析中的空间效应. 地理学报. 2023(03): 517-531 .
    14. 杨颖. 人工智能在地图学中的应用展望. 电子技术. 2023(03): 162-163 .
    15. 诸云强,孙凯,胡修棉,闾海荣,王新兵,杨杰,王曙,李威蓉,宋佳,苏娜,牟兴林. 大规模地球科学知识图谱构建与共享应用框架研究与实践. 地球信息科学学报. 2023(06): 1215-1227 .
    16. 陆锋,诸云强,张雪英. 时空知识图谱研究进展与展望. 地球信息科学学报. 2023(06): 1091-1105 .
    17. 诸云强,孙凯,李威蓉,王曙,宋佳,程全英,杨杰,牟兴林,耿文广,代小亮. 地球科学知识图谱比较分析与启示:构建方法与内容视角. 高校地质学报. 2023(03): 382-394 .
    18. 张彤,刘仁宇,王培晓,高楚林,刘杰,王望舒. 感知物理先验的机器学习及其在地理空间智能中的研究前景. 地球信息科学学报. 2023(07): 1297-1311 .
    19. 丁建丽,葛翔宇,王瑾杰,赵爽,丁玥,秦少峰,朱传梅,马雯. 地理学领域的人工智能应用与思考. 新疆大学学报(自然科学版)(中英文). 2023(04): 385-397 .
    20. 付偲,李超岭,张海燕,刘畅,李丰丹. 基于多模态特征融合的地质体识别方法. 地球科学. 2023(10): 3743-3752 .
    21. Yunqiang ZHU,Kai SUN,Shu WANG,Chenghu ZHOU,Feng LU,Hairong LV,Qinjun QIU,Xinbing WANG,Yanmin QI. An adaptive representation model for geoscience knowledge graphs considering complex spatiotemporal features and relationships. Science China Earth Sciences. 2023(11): 2563-2578 .
    22. 诸云强,孙凯,王曙,周成虎,陆锋,闾海荣,邱芹军,王新兵,祁彦民. 顾及复杂时空特征及关系的地球科学知识图谱自适应表达模型. 中国科学:地球科学. 2023(11): 2609-2622 .
    23. 陈杰,邓敏,刘启亮,石岩,刘慧敏. 大数据智能时代地理信息科学专业人才培养方案的提质与实践. 测绘通报. 2023(11): 163-167 .
    24. 黄露,侯爱羚. 基于省市联动的基础测绘数据智能更新技术. 地理空间信息. 2023(12): 83-85 .
    25. 许磊,李琪,陶雲,余红楚,杜文英,陈泽强,陈能成. 数据驱动的短临降水预报可靠性分析技术体系研究. 时空信息学报. 2023(04): 508-517 .
    26. 贺智,陈逸敏,刘凯. AI时代地理信息科学一流本科专业课程建设探索. 测绘通报. 2023(S2): 60-63 .
    27. 杨学习,邓敏,刘瑜. 社会感知与地理空间智能的研究动态与展望——“社会感知与地理空间智能”专栏导读. 地理与地理信息科学. 2022(01): 1-4 .
    28. 李双成,张文彬,陈立英,梁泽,张雅娟,王铮. 孪生空间及其应用——兼论地理研究空间的重构. 地理学报. 2022(03): 507-517 .
    29. 孔宇,甄峰,张姗琪. 智能技术影响下的城市空间研究进展与思考. 地理科学进展. 2022(06): 1068-1081 .
    30. 刘瑜,郭浩,李海峰,董卫华,裴韬. 从地理规律到地理空间人工智能. 测绘学报. 2022(06): 1062-1069 .
    31. 涂伟,夏吉喆,汪驰升,陆旻,乐阳. 面向智慧城市的空间计算与分析类课程教学模式探索与实践. 测绘地理信息. 2022(S1): 14-17 .
    32. 高嘉良,陆锋,彭澎,徐阳. 基于网络文本迁移学习的旅游知识图谱构建. 武汉大学学报(信息科学版). 2022(08): 1191-1200+1219 .
    33. 武芳,杜佳威,钱海忠,翟仁健. 地图综合智能化研究的发展与思考. 武汉大学学报(信息科学版). 2022(10): 1675-1687 .
    34. 兰锐,陈慧玲,童杨辉. “自然资源大脑”构建关键技术及应用设想. 自然资源信息化. 2022(05): 99-105 .
    35. 慎利,徐柱,李志林,刘万增,崔秉良. 从地理信息服务到地理知识服务:基本问题与发展路径. 测绘学报. 2021(09): 1194-1202 .
    36. 张永生,张振超,童晓冲,纪松,于英,赖广陵. 地理空间智能研究进展和面临的若干挑战. 测绘学报. 2021(09): 1137-1146 .
    37. 艾廷华. 深度学习赋能地图制图的若干思考. 测绘学报. 2021(09): 1170-1182 .

    Other cited types(13)

Catalog

    Article views PDF downloads Cited by(50)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return