ZHANG Bo, ZHANG Rui, LIU Guoxiang, LIU Qiao, CAI Jialun, YU Bing, FU Yin, LI Zhilin. Monitoring of Interannual Variabilities and Outburst Regularities Analysis of Glacial Lakes at the End of Gongba Glacier Utilizing SAR Images[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1054-1064. DOI: 10.13203/j.whugis20190087
Citation: ZHANG Bo, ZHANG Rui, LIU Guoxiang, LIU Qiao, CAI Jialun, YU Bing, FU Yin, LI Zhilin. Monitoring of Interannual Variabilities and Outburst Regularities Analysis of Glacial Lakes at the End of Gongba Glacier Utilizing SAR Images[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1054-1064. DOI: 10.13203/j.whugis20190087

Monitoring of Interannual Variabilities and Outburst Regularities Analysis of Glacial Lakes at the End of Gongba Glacier Utilizing SAR Images

Funds: 

The National Key Research and Developement Program of China 2017YFB0502700

the National Natural Science Foundation of China 41771402

the National Natural Science Foundation of China 41871069

the National Natural Science Foundation of China 41601503

the National Natural Science Foundation of China 41801399

the Project on the Application Foundation of Sichuan Science and Technology Support Plan 2018JY0564

the Project on the Application Foundation of Sichuan Science and Technology Support Plan 2018JY0138

More Information
  • Author Bio:

    ZHANG Bo, PhD candidate, specializes in InSAR and surface deformation retrieval. E-mail:rsbozh@qq.com

  • Corresponding author:

    ZHANG Rui, PhD, associate professor. E-mail: zhangrui@swjtu.edu.cn

  • Received Date: March 06, 2019
  • Published Date: July 04, 2019
  • Affected by global climate change, most glaciers in southeastern Tibet have deteriorated more and more frequently. The risk of mountain disasters, such as floods, surges and debris flows, has increased sharply in recent years. This paper implements a research on glacial lakes classification by using multi-source synthetic aperture radar (SAR) images. According to the statistical analysis of intensity difference between signals coming from water and non-water objects, a method of glacial lake extraction and dynamic monitoring based on the intensity standardization ratio of sequential SAR images is proposed. Within a typical experimental area in Gongba Glacier basin, the image series of ALOS/PALSAR-1 of Japan Space Agency and Sentinel-1A of European Space Agency are selected to carry out dynamic extraction of glacial lakes and long-term change analysis over 11 years'time, just for validation purpose. The temporal and spatial variations of glacial lakes at the end of Gongba Glacier from 2007 to 2018 are successfully obtained. And the further analysis finds out that the volume of glacial lakes increase rapidly in the past ten years. This evidence can also confirm the current situation of aggravated melting of Gongba Glacier. In addition, the recent monitoring results in 2018 show that the expansion of local burst gushes has broken the inherent life cycle of glacial lakes, and even trigger secondary disasters of floods and debris flows. It is necessary to strengthen monitoring and prevention.
  • [1]
    Liu J, Cheng Z, Su P. The Relationship Between Air Temperature Fluctuation and Glacial Lake Outburst Floods in Tibet, China[J].Quaternary International, 2014, 321(2): 78-87 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bdf5bb12626ae36c17911d89c0bf2729
    [2]
    Cenderelli D A, Wohl E E. Peak Discharge Estimates of Glacial-Lake Outburst Floods and "Normal" Climatic Floods in the Mount Everest Region, Nepal[J].Geomorphology, 2001, 40(1): 57-90 http://cn.bing.com/academic/profile?id=f6b65f87be5c8aefd232932675e33c6f&encoded=0&v=paper_preview&mkt=zh-cn
    [3]
    Richardson S D, Reynolds J M. An Overview of Glacial Hazards in the Himalayas[J]. Quaternary International, 2000, 65-66: 31-47 doi: 10.1016/S1040-6182(99)00035-X
    [4]
    马荣华, 杨桂山, 段洪涛, 等.中国湖泊的数量、面积与空间分布[J].中国科学:地球科学, 2011, 41(3): 394-401 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201103011

    Ma Ronghua, Yang Guishan, Duan Hongtao, et al. China's Lakes at Present: Number, Area and Spatial Distribution[J].Science China Earth Sciences, 2011, 41(3): 394-401 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201103011
    [5]
    姚晓军, 刘时银, 李龙, 等.近40年可可西里地区湖泊时空变化特征[J].地理学报, 2013, 68(7):886-896 http://d.old.wanfangdata.com.cn/Periodical/dlxb201307002

    Yao Xiaojun, Liu Shiyin, Li Long, et al. Spatial-Temporal Variations of Lake Area in Hoh Xil Region in the Past 40 Years[J].Acta Geographica Sinica, 2013, 68(7):886-896 http://d.old.wanfangdata.com.cn/Periodical/dlxb201307002
    [6]
    丁永建, 刘时银, 叶柏生, 等.近50 a中国寒区与旱区湖泊变化的气候因素分析[J].冰川冻土, 2006, 28(5): 623-632 doi: 10.3969/j.issn.1000-0240.2006.05.001

    Ding Yongjian, Liu Shiyin, Ye Baisheng, et al. Climatic Implications on Variations of Lakes in the Cold and Arid Regions of China During the Recent 50 Years[J].Journal of Glaciology and Geocryology, 2006, 28(5): 623-632 doi: 10.3969/j.issn.1000-0240.2006.05.001
    [7]
    王欣, 刘时银, 姚晓军, 等.我国喜马拉雅山区冰湖遥感调查与编目.地理学报, 2010, 65(1): 29-36 http://d.old.wanfangdata.com.cn/Periodical/dlxb201001003

    Wang Xin, Liu Shiyin, Yao Xiaojun, et al. Glacier Lake Investigation and Inventory in the Chinese Himalayas Based on the Remote Sensing Data[J].Acta Geographica Sinica, 2010, 65(1): 29-36 http://d.old.wanfangdata.com.cn/Periodical/dlxb201001003
    [8]
    姚晓军, 刘时银, 韩磊, 等.冰湖的界定与分类体系——面向冰湖编目和冰湖灾害研究[J].地理学报, 2017, 72(7): 1 173-1 183 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxb201707004

    Yao Xiaojun, Liu Shiyin, Han Lei, et al. Definition and Classification Systems of Glacial Lake for Inventory and Hazards Study[J]. Acta Geographica Sinica, 2017, 72(7): 1 173-1 183 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxb201707004
    [9]
    孙美平, 刘时银, 姚晓军, 等. 2013年西藏嘉黎县"7.5"冰湖溃决洪水成因及潜在危害[J].冰川冻土, 2014, 36(1): 158-165 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdt201401020

    Sun Meiping, Liu Shiyin, Yao Xiaojun, et al. The Cause and Potential Hazard of Glacial Lake Outburst Flood Occurred on July 5, 2013 in Jiali County, Tibet[J]. Journal of Glaciology and Geocryology, 2014, 36(1): 158-165 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdt201401020
    [10]
    姚晓军, 刘时银, 孙美平, 等.20世纪以来西藏冰湖溃决灾害事件梳理[J].自然资源学报, 2014, 29(8):1 377-1 390 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201408010

    Yao Xiaojun, Liu Shiyin, Sun Meiping, et al. Study on the Glacial Lake Outburst Flood Events in Tibet Since the 20th Century[J]. Journal of Natural Resources, 2014, 29(8):1 377-1 390 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201408010
    [11]
    Hasnain S I. Himalayan Glaciers: Hydrology and Hydrochemistry[M]. Mumbai:Allied Publishers, 1999
    [12]
    Mangerud J, Gosse J, Matiouchkov A, et al. Glaciers in the Polar Urals, Russia, Were not Much Larger During the Last Global Glacial Maximum than Today[J]. Quaternary Science Reviews, 2008, 27(9-10): 1 047-1 057 doi: 10.1016/j.quascirev.2008.01.015
    [13]
    Byers A. Contemporary Human Impacts on Alpine Ecosystems in the Sagarmatha(Mt. Everest) National Park, Khumbu, Nepal[J]. Annals of the Association of American Geographers, 2005, 95(1): 112-140 doi: 10.1111/j.1467-8306.2005.00452.x
    [14]
    Jawak S D, Kulkarni K, Luis A J. A Review on Extraction of Lakes from Remotely Sensed Optical Satellite Data with a Special Focus on Cryospheric Lakes[J]. Advances in Remote Sensing, 2015, 4(3): 177-195 doi: 10.4236/ars.2015.43015
    [15]
    Deus D, Gloaguen R. Remote Sensing Analysis of Lake Dynamics in Semi-Arid Regions: Implication for Water Resource Management. Lake Manyara, East African Rift, Northern Tanzania[J]. Water, 2013, 5(2): 698-727 doi: 10.3390/w5020698
    [16]
    Racoviteanu A, Williams M, Barry R. Optical Remote Sensing of Glacier Characteristics: A Review with Focus on the Himalaya[J].Sensors, 2008, 8(5): 3 355-3 383 doi: 10.3390/s8053355
    [17]
    Song C, Huang B, Ke L, et al. Remote Sensing of Alpine Lake Water Environment Changes on the Tibetan Plateau and Surroundings: A Review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 92: 26-37 doi: 10.1016/j.isprsjprs.2014.03.001
    [18]
    Sakai A. Glacial Lakes in the Himalayas: A Review on Formation and Expansion Processes[J].Global Environmental Research, 2012, 16: 23-30 https://pdfs.semanticscholar.org/9693/47b79d92376bba11b2d4c571aa2c0e500430.pdf
    [19]
    周志伟, 鄢子平, 刘苏, 等.永久散射体与短基线雷达干涉测量在城市地表形变中的应用[J].武汉大学学报·信息科学版, 2011, 36(8): 928-931 http://ch.whu.edu.cn/CN/abstract/abstract635.shtml

    Zhou Zhiwei, Yan Ziping, Liu Su, et al. Persistent Scatterers and Small Baseline SAR Interferometry for City Subsidence Mapping: A Case Study in Panjin, China[J]. Geomatics and Information Science of Wuhan University, 2011, 36(8): 928-931 http://ch.whu.edu.cn/CN/abstract/abstract635.shtml
    [20]
    周春霞, 鄂栋臣, 廖明生. InSAR用于南极测图的可行性研究[J].武汉大学学报·信息科学版, 2004, 29(7): 619-623 http://ch.whu.edu.cn/CN/abstract/abstract4513.shtml

    Zhou Chunxia, E Dongchen, Liao Mingsheng. Feasibility of InSAR Application to Antarctic Mapping[J].Geomatics and Information Science of Wuhan University, 2004, 29(7): 619-623 http://ch.whu.edu.cn/CN/abstract/abstract4513.shtml
    [21]
    邓方慧, 周春霞, 王泽民, 等.利用偏移量跟踪测定Amery冰架冰流汇合区的冰流速[J].武汉大学学报·信息科学版, 2015, 40(7): 901-906 http://ch.whu.edu.cn/CN/abstract/abstract3296.shtml

    Deng Fanghui, Zhou Chunxia, Wang Zemin, et al. Ice-Flow Velocity Derivation of the Confluence Zone of the Amery Ice Shelf Using Offset-Tracking Method[J]. Geomatics and Information Science of Wuhan University, 2015, 40(7): 901-906 http://ch.whu.edu.cn/CN/abstract/abstract3296.shtml
    [22]
    赵磊, 陈尔学, 李增元, 等.基于均值漂移和谱图分割的极化SAR影像分割方法及其评价[J].武汉大学学报·信息科学版, 2015, 40(8): 1 061-1 068 http://ch.whu.edu.cn/CN/abstract/abstract3413.shtml

    Zhao Lei, Chen Erxue, Li Zengyuan, et al. Segmentation of PolSAR Data Based on Mean-Shift and Spectral Graph Partitioning and Its Evaluation[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1 061-1 068 http://ch.whu.edu.cn/CN/abstract/abstract3413.shtml
    [23]
    李玉, 胡海峰, 赵雪梅, 等.基于可变形状参数Gamma分布的模糊聚类多视SAR图像分割[J].武汉大学学报·信息科学版, 2018, 43(7): 984-992 http://ch.whu.edu.cn/CN/abstract/abstract6143.shtml

    Li Yu, Hu Haifeng, Zhao Xuemei, et al. Fuzzy Clustering Algorithm for Multi-view SAR Image Segmentation Based on Gamma Distribution with Variable Shape Parameter[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 984-992 http://ch.whu.edu.cn/CN/abstract/abstract6143.shtml
    [24]
    Wang H, Zhou Z, Turnbull J, et al. Pol-SAR Classification Based on Generalized Polar Decomposition of Mueller Matrix[J].IEEE Geoscience and Remote Sensing Letters, 2016, 13(4): 565-569 doi: 10.1109/LGRS.2016.2525775
    [25]
    苏珍.贡嘎山海洋性冰川发育条件及分布特征[J].冰川冻土, 1992, 15(4):551-558 http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT199304003.htm

    Su Zhen.The Condition of Development and Distributed Characteristic of the Mt. Gongga Glacier[J]. Journal of Glaciology and Geocryology, 1992, 15(4):551-558 http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT199304003.htm
    [26]
    张宁宁, 何元庆, 段克勤, 等.贡嘎山西坡贡巴冰川25 a的变化情况[J].冰川冻土, 2008, 30(3):380-382 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdt200803004

    Zhang Ningning, He Yuanqing, Duan Keqin, et al. Changes of Gongba Glacier in the West Slope of Mt. Gongga During the Past 25 Years[J]. Journal of Glaciology and Geocryology, 2008, 30(3):380-382 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdt200803004
    [27]
    曹真堂.贡嘎山贡巴冰川水文特征[J].冰川冻土, 1988, 10(1):57-65 http://www.cnki.com.cn/Article/CJFDTotal-BCDT198801007.htm

    Cao Zhentang. The Hydrologic Characteristics of the Gongba Glacier in the Mount Gongga Area[J]. Journal of Glaciology and Geocryology, 1988, 10(1):57-65 http://www.cnki.com.cn/Article/CJFDTotal-BCDT198801007.htm
    [28]
    康建成.贡巴冰川边缘冰碛垄特征与形成过程[J].冰川冻土, 1989, 11(2): 172-176, 193 http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT198902007.htm

    Kang Jiancheng. The Characteristics and Forming Process of Glacial Peripheral Moraines at Gongba Glaciers in Mt. Gongga[J].Journal of Glaciology and Geocryology, 1989, 11(2): 172-176, 193 http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT198902007.htm
    [29]
    Ma X, Wu P, Wu Y, et al. A Review on Recent Developments in Fully Polarimetric SAR Image Despeckling[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3): 743-758 doi: 10.1109/JSTARS.2017.2768059
    [30]
    Sha C, Hou J, Cui H. A Robust 2D Otsu's Thresholding Method in Image Segmentation[J].Journal of Visual Communication and Image Representation, 2016, 41: 339-351 doi: 10.1016/j.jvcir.2016.10.013
  • Related Articles

    [1]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [2]GENG Jianghui, YAN Zhe, WEN Qiang. Multi-GNSS Satellite Clock and Bias Product Combination: The Third IGS Reprocessing Campaign[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1070-1081. DOI: 10.13203/j.whugis20230071
    [3]LIU Mingliang, AN Jiachun, WANG Zemin, ZHANG Baojun, SONG Xiangyu. Performance Analysis of BDS-3 Multi-frequency Pseudorange Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 902-910. DOI: 10.13203/j.whugis20200714
    [4]YUAN Haijun, ZHANG Zhetao, HE Xiufeng, XU Tianyang, XU Xueyong. Stability Analysis of BDS-3 Satellite Differential Code Bias and Its Impacts on Single Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 425-432. DOI: 10.13203/j.whugis20200517
    [5]ZHOU Ren-yu, HU Zhi-gang, CAI Hong-liang, ZHAO Zhen, RAO Yong-nan, CHEN Liang, ZHAO Qi-le. Analysis of Pseudorange and Carrier Ranging Deviation of BDS-3 Using Parabolic Directional Antenna[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1298-1308. DOI: 10.13203/j.whugis20200182
    [6]ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119
    [7]ZOU Xuan, LI Zongnan, CHEN Liang, LI Min, TANG Weiming, SHI Chuang. Modeling BeiDou IGSO and MEO Satellites Code Pseudorange Variations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1661-1666. DOI: 10.13203/j.whugis20160275
    [8]LI Xin, ZHANG Xiaohong, ZENG Qi, PAN Lin, ZHU Feng. The Estimation of BeiDou Satellite-induced Code Bias and Its Impact on the Precise Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1461-1467. DOI: 10.13203/j.whugis20160062
    [9]LOU Yidong, GONG Xiaopeng, GU Shengfeng, ZHENG Fu, YI Wenting. The Characteristic and Effect of Code Bias Variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040-1046. DOI: 10.13203/j.whugis20150107
    [10]FAN Lei, ZHONG Shiming, LI Zishen, OU Jikun. Effect of Tracking Stations Distribution on the Estimation of Differential Code Biases by GPS Satellites Based on Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 316-321. DOI: 10.13203/j.whugis20140114
  • Cited by

    Periodical cited type(28)

    1. 吕峥,孙群,温伯威,张付兵,马京振. 顾及形状相似性的道路与居民地协同化简方法. 地球信息科学学报. 2024(05): 1270-1282 .
    2. 铁占琦. 利用改进的Hausdorff距离匹配多尺度线要素. 地理空间信息. 2024(05): 62-65 .
    3. 王庆社,王雅欣,姜青香,郭思慧. “天地图·北京”多源道路数据融合关键技术研究. 北京测绘. 2024(06): 874-879 .
    4. 陈钉均,梁芮嘉. 基于特征聚类驾驶员服从度跟驰模型参数标定. 计算机仿真. 2024(10): 126-132 .
    5. 齐杰,王中辉,李驿言. 基于图卷积神经网络的道路网匹配. 测绘通报. 2023(12): 19-24+44 .
    6. 吴冰娇,王中辉,杨飞. 用于多尺度道路网匹配的语义相似性计算模型. 测绘科学. 2022(03): 166-173 .
    7. 蒋阳升,俞高赏,胡路,李衍. 基于聚类站点客流公共特征的轨道交通车站精细分类. 交通运输系统工程与信息. 2022(04): 106-112 .
    8. 周秀华,李乃强. 基于多种相似度特征的道路实体融合方法. 测绘通报. 2021(08): 102-105+157 .
    9. 秦育罗,宋伟东,张在岩,孙小荣. 顾及几何特征和拓扑连续性的道路网匹配方法. 测绘通报. 2021(08): 55-60 .
    10. 杨飞,王中辉. 河系几何相似性的层次度量方法. 地球信息科学学报. 2021(12): 2139-2150 .
    11. 程绵绵,孙群,季晓林,赵云鹏. 改进平均Fréchet距离法及在化简评价中的应用. 测绘科学. 2020(03): 170-177 .
    12. 赵元棣,田英杰,吴佳馨. 航空器飞行轨迹相似性度量及聚类分析. 中国科技论文. 2020(02): 249-254 .
    13. Wenyue GUO,Anzhu YU,Qun SUN,Shaomei LI,Qing XU,Bowei WEN,Yuanfu LI. A Multisource Contour Matching Method Considering the Similarity of Geometric Features. Journal of Geodesy and Geoinformation Science. 2020(03): 76-87 .
    14. 秦育罗,郭冰,孙小荣. 改进Hausdorff距离及其在多尺度道路网匹配中的应用. 测绘科学技术学报. 2020(03): 313-318 .
    15. 郝志伟,李成名,殷勇,武鹏达,吴伟. 一种基于Fréchet距离的断裂等高线内插算法. 测绘通报. 2019(01): 65-68+74 .
    16. 郭文月,刘海砚,孙群,余岸竹,丁梓越. 顾及几何特征相似性的多源等高线匹配方法. 测绘学报. 2019(05): 643-653 .
    17. 宗琴,彭荃,秦万英. 一种基于模糊矩阵的空间面对象相似性度量算法. 北京测绘. 2019(10): 1218-1221 .
    18. 李兆兴,翟京生,武芳. 线要素综合的形状相似性评价方法. 武汉大学学报(信息科学版). 2019(12): 1859-1864 .
    19. 周家新,陈建勇,单志超,陈长康. 航空磁探中潜艇目标的联合估计检测方法研究. 兵工学报. 2018(05): 833-840 .
    20. 郭宁宁,盛业华,吕海洋,黄宝群,张思阳. 径向基函数神经网络的路网自动匹配算法. 测绘科学. 2018(03): 45-50 .
    21. 张瀚,李静,吕品,徐永志,刘格林. 六角格网的弧线矢量数据量化拟合方法. 计算机辅助设计与图形学学报. 2018(04): 557-567 .
    22. 邵世维,刘辉,肖立霞,王恒. 一种基于Fréchet距离的复杂线状要素匹配方法. 武汉大学学报(信息科学版). 2018(04): 516-521 .
    23. 苏满佳,张逸鸿,谢荣臻,朱海飞,管贻生,毛世鑫. 连续软体机器人的结构范型与形态复现. 机器人. 2018(05): 640-647+672 .
    24. 宗琴,姜树辉,刘艳霞. 多尺度矢量地图中模糊相似变换及其度量模型. 测绘科学. 2018(11): 72-78 .
    25. 郭文月,刘海砚,孙群,余岸竹,季晓林. 利用最长公共子序列度量线要素相似性的方法. 测绘科学技术学报. 2018(05): 518-523 .
    26. 郭宁宁,盛业华,黄宝群,吕海洋,张思阳. 基于人工神经网络的多特征因子路网匹配算法. 地球信息科学学报. 2016(09): 1153-1159 .
    27. 杨亚辉. 利用几何相似性快速测量鱼重的数学模型. 电子技术与软件工程. 2016(20): 182-183 .
    28. 逯跃锋,张奎,刘硕,吴跃,赵硕,李强,冯晨. 一种基于斜率差和方位角的矢量数据匹配算法. 山东大学学报(工学版). 2016(06): 31-39 .

    Other cited types(30)

Catalog

    Article views PDF downloads Cited by(58)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return