TANG Jie, ZHANG Shuangxi, SHAO Zhenfeng, ZOU Chenyang, YI Xuchong. Impact of Roof Shape on Micro-environment in Street Canyons by Numerical Simulation[J]. Geomatics and Information Science of Wuhan University, 2020, 45(6): 888-894. DOI: 10.13203/j.whugis20180457
Citation: TANG Jie, ZHANG Shuangxi, SHAO Zhenfeng, ZOU Chenyang, YI Xuchong. Impact of Roof Shape on Micro-environment in Street Canyons by Numerical Simulation[J]. Geomatics and Information Science of Wuhan University, 2020, 45(6): 888-894. DOI: 10.13203/j.whugis20180457

Impact of Roof Shape on Micro-environment in Street Canyons by Numerical Simulation

Funds: The National Natural Science Foundation of China (41874169, U1939204); Wuhan Multi‐factor Urban Geological Survey Demonstration Project.
More Information
  • Author Bio:

    TANG Jie, postgraduate, specializes in numerical simulation of urban geophysics.jietang@whu.edu.cn

  • Corresponding author:

    ZHANG Shuangxi, PhD, professor. E-mail:shxzhang@sgg.whu.edu.cn

  • Received Date: April 23, 2019
  • Published Date: June 04, 2020
  • With the rapid development of urbanization, the changes of urban micro-environment caused by the underlying surface are becoming obvious. The influence of roof structure on the single physical field (such as wind field or temperature field) in the urban micro-environment has been emphasized, while the coupling of two physical fields has been neglected. This paper introduces a model to study the effect of building roof shape on urban micro-environment and the model includes two sub-models, that is computational fluid dynamics (CFD) model and radiation (RAD) model. The two-dimensional numerical model was constructed with four roof-shaped structures and three typical solar incidence angles to simulate the micro-environment in street canyons. Then, the mathematical-physical model was validated by comparing the results of wind tunnel experiment. The results show that the model can simulate urban micro-environment. Moreover, flat roof buildings are more conducive to mitigating the urban heat island effect, and the canyon heat island effect formed by triangular roofs is the strongest, while the downward roof buildings are bad for the heat diffusion on the windward side.
  • [1]
    Oke T R. Boundary Layer Climates[J]. Earth Science Reviews, 1987, 27(3):265-272 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0231075247/
    [2]
    Allegrini J, Dorer V, Carmeliet J. Influence of Morphologies on the Microclimate in Urban Neighbourhoods[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2015, 144:108-117 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a3a361cb0eb7a69345e1d6f84bfdd8f3
    [3]
    Allegrini J, Carmeliet J. Simulations of Local Heat Islands in Zürich with Coupled CFD and Building Energy Models[J]. Urban Climate, 2018, 24:340-359 doi: 10.1016/j.uclim.2017.02.003
    [4]
    Giridharan R, Ganesan S, Lau S S Y. Daytime Urban Heat Island Effect in High-Rise and High-Density Residential Developments in Hong Kong[J].Energy & Buildings, 2004, 36(6):525-534 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c9793fb4760d42eb99f7c66a075bdbc8
    [5]
    闫峰,覃志豪,李茂松,等. 基于MODIS数据的上海市热岛效应研究[J]. 武汉大学学报·信息科学版, 2007, 32(7):576-580 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb200707003

    Yan Feng, Qin Zhihao, Li Maosong, et al. On Urban Heat Island of Shanghai City from MODIS Data[J]. Geomatics and Information Science of Wuhan University,2007, 32(7):576-580 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb200707003
    [6]
    曹丽琴,张良培,李平湘,等. 城市下垫面覆盖类型变化对热岛效应影响的模拟研究[J]. 武汉大学学报·信息科学版, 2008, 33(12):1229-1232 http://www.cqvip.com/Main/Detail.aspx?id=28867575

    Cao Liqin, Zhang Liangpei, Li Pingxiang, et al. Simulation Study of Influence of Change of Land Surface Types on Urban Heat Island[J]. Geomatics and Information Science of Wuhan University, 2008, 33(12):1229-1232 http://www.cqvip.com/Main/Detail.aspx?id=28867575
    [7]
    马卫武,张翼,吴春玲,等. 住宅小区室外微气候及热岛潜势分析[J]. 中南大学学报(自然科学版), 2013, 44(12):5117-5124 http://www.cqvip.com/QK/90745B/201312/48691433.html

    Ma Weiwu, Zhang Yi, Wu Chunling, et al. Outdoor Micro-climate of Residential District to Predict Heat Island Potential[J]. Journal of Central South University (Science and Technology), 2013, 44(12):5117-5124 http://www.cqvip.com/QK/90745B/201312/48691433.html
    [8]
    崔桂香,史瑞丰,王志石,等. 城市大气微环境大涡模拟研究[J]. 中国科学, 2008, 38(6):626-636 http://d.old.wanfangdata.com.cn/Conference/8699476

    Cui Guixiang, Shi Ruifeng, Wang Zhishi, et al. The Simulation of Large Eddy in Urban Atmospheric Micro-environment[J]. Science in China Press, 2008, 38(6):626-636 http://d.old.wanfangdata.com.cn/Conference/8699476
    [9]
    Xie X, Liu C, Leung D Y C. Impact of Building Facades and Ground Heating on Wind Flow and Pollutant Transport in Street Canyons[J]. Atmospheric Environment, 2007, 41(39):9030-9049 doi: 10.1016/j.atmosenv.2007.08.027
    [10]
    Kwak K H, Baik J J, Lee S H, et al. Computational Fluid Dynamics Modelling of the Diurnal Variation of Flow in a Street Canyon[J]. Boundary-Layer Meteorology, 2011, 141(1):77-92 doi: 10.1007/s10546-011-9630-4
    [11]
    Ledo L, Kosasih P B, Cooper P. Roof Mounting Site Analysis for Micro-wind Turbines[J].Renewable Energy, 2011, 36(5):1379-1391 doi: 10.1016/j.renene.2010.10.030
    [12]
    Abohela I, Hamza N, Dudek S. Effect of Roof Shape, Wind Direction, Building Height and Urban Configuration on the Energy Yield and Positioning of Roof Mounted Wind Turbines[J]. Renewable Energy, 2013, 50(3):1106-1118 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=29b9334547f39fd18cb489172a45e75b
    [13]
    Mahdavinejad M, Javanroodi K. Impact of Roof Shape on Air Pressure, Wind Flow and Indoor Temperature of Residential Buildings[J]. International Journal of Sustainable Building Technology & Urban Development, 2016, 7(2):87-103 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/2093761X.2016.1167645
    [14]
    Launder B E, Spalding D B. The Numerical Computation of Turbulent Flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(2):269-289 doi: 10.1016/0045-7825(74)90029-2
    [15]
    Richards P J, Hoxey R P. Appropriate Boundary Conditions for Computational Wind Engineering Models Using the k-ε Turbulence Model[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1993, 46-47:145-153 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=51bef29ef615865d4e917e2c98f168e0
    [16]
    Yaghoobian N, Kleissl J, Krayenhoff E S. Modeling the Thermal Effects of Artificial Turf on the Urban Environment[J]. Journal of Applied Meteorology and Climatology, 2010, 49(3):332-345 doi: 10.1175/2009JAMC2198.1
    [17]
    Ashie Y, Kono T. Urban-Scale CFD Analysis in Support of a Climate-Sensitive Design for the Tokyo Bay Area[J]. International Journal of Climatology, 2011, 31(2):174-188 doi: 10.1002/joc.2226
    [18]
    Uehara K, Murakami S, Oikawa S, et al. Wind Tunnel Experiments on How Thermal Stratification Affects Flow in and Above Urban Street Canyons[J]. Atmospheric Environment, 2000, 34(10): 1553-1562 doi: 10.1016/S1352-2310(99)00410-0
    [19]
    Bottillo S, de Lieto Vollaro A, Galli G, et al. CFD Modeling of the Impact of Solar Radiation in a Tridimensional Urban Canyon at Different Wind Conditions[J]. Solar Energy, 2014, 102(4):212-222 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e67f718fca01866249802dc43dddf5e4
  • Related Articles

    [1]TANG Jun, ZHONG Zhengyu, DING Mingfei, WU Xuequn. Ionospheric TEC Prediction in China Based on ENN Improved by PSO Algorithm[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1867-1878. DOI: 10.13203/j.whugis20220254
    [2]LI Yongtao, ZHAO Ang, LI Jianwen, CHE Tongyu, PAN Lin, CHEN Chen. Regional Ionospheric TEC Modeling and Accuracy Analysis Based on Observations from a Station[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1): 69-78. DOI: 10.13203/j.whugis20190286
    [3]OU Ming, ZHEN Weimin, XU Jisheng, YU Xiao, LIU Yiwen, LIU Dun. Regional Ionospheric TEC Reconstruction by Data Assimilation Technique[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1075-1081. DOI: 10.13203/j.whugis20150297
    [4]SONG Fucheng, SHI Shuangshuang, FENG Jiandi. Construction of Ionospheric TEC Assimilation Model Based on Chapman Function[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 784-790. DOI: 10.13203/j.whugis20150101
    [5]WANG Zemin, CHE Guowei, AN Jiachun. Comprehensive Observation and Analysis of Weddell Sea Anomaly in Antarctica[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1421-1427. DOI: 10.13203/j.whugis20150270
    [6]NIE Wenfeng, HU Wusheng, PAN Shuguo, SONG Yubing. )Extraction of Regional Ionospheric TEC from GPS Dual Observation[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1022-1027. DOI: 10.13203/j.whugis20130046
    [7]TANG Jun, YAO Yibin, CHEN Peng, ZHANG Shun. Prediction Models of Ionospheric TEC Improved by EMD Method[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 408-411.
    [8]CHEN Peng, YAO Yibin, WU Han. TEC Prediction of Ionosphere Based on Time Series Analysis[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 267-270.
    [9]LIN Jian, WU Yun, ZHU Fuying. Ionosphere TEC Anomalous Disturbance of Pre-seism[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 975-978.
    [10]MENG Yang, WANG Zemin, E Dongchen. Ionopsheric TEC Anomalies of Pre-Earthquake Based on GPS Data[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1): 81-84.
  • Cited by

    Periodical cited type(28)

    1. 吕峥,孙群,温伯威,张付兵,马京振. 顾及形状相似性的道路与居民地协同化简方法. 地球信息科学学报. 2024(05): 1270-1282 .
    2. 铁占琦. 利用改进的Hausdorff距离匹配多尺度线要素. 地理空间信息. 2024(05): 62-65 .
    3. 王庆社,王雅欣,姜青香,郭思慧. “天地图·北京”多源道路数据融合关键技术研究. 北京测绘. 2024(06): 874-879 .
    4. 陈钉均,梁芮嘉. 基于特征聚类驾驶员服从度跟驰模型参数标定. 计算机仿真. 2024(10): 126-132 .
    5. 齐杰,王中辉,李驿言. 基于图卷积神经网络的道路网匹配. 测绘通报. 2023(12): 19-24+44 .
    6. 吴冰娇,王中辉,杨飞. 用于多尺度道路网匹配的语义相似性计算模型. 测绘科学. 2022(03): 166-173 .
    7. 蒋阳升,俞高赏,胡路,李衍. 基于聚类站点客流公共特征的轨道交通车站精细分类. 交通运输系统工程与信息. 2022(04): 106-112 .
    8. 周秀华,李乃强. 基于多种相似度特征的道路实体融合方法. 测绘通报. 2021(08): 102-105+157 .
    9. 秦育罗,宋伟东,张在岩,孙小荣. 顾及几何特征和拓扑连续性的道路网匹配方法. 测绘通报. 2021(08): 55-60 .
    10. 杨飞,王中辉. 河系几何相似性的层次度量方法. 地球信息科学学报. 2021(12): 2139-2150 .
    11. 程绵绵,孙群,季晓林,赵云鹏. 改进平均Fréchet距离法及在化简评价中的应用. 测绘科学. 2020(03): 170-177 .
    12. 赵元棣,田英杰,吴佳馨. 航空器飞行轨迹相似性度量及聚类分析. 中国科技论文. 2020(02): 249-254 .
    13. Wenyue GUO,Anzhu YU,Qun SUN,Shaomei LI,Qing XU,Bowei WEN,Yuanfu LI. A Multisource Contour Matching Method Considering the Similarity of Geometric Features. Journal of Geodesy and Geoinformation Science. 2020(03): 76-87 .
    14. 秦育罗,郭冰,孙小荣. 改进Hausdorff距离及其在多尺度道路网匹配中的应用. 测绘科学技术学报. 2020(03): 313-318 .
    15. 郝志伟,李成名,殷勇,武鹏达,吴伟. 一种基于Fréchet距离的断裂等高线内插算法. 测绘通报. 2019(01): 65-68+74 .
    16. 郭文月,刘海砚,孙群,余岸竹,丁梓越. 顾及几何特征相似性的多源等高线匹配方法. 测绘学报. 2019(05): 643-653 .
    17. 宗琴,彭荃,秦万英. 一种基于模糊矩阵的空间面对象相似性度量算法. 北京测绘. 2019(10): 1218-1221 .
    18. 李兆兴,翟京生,武芳. 线要素综合的形状相似性评价方法. 武汉大学学报(信息科学版). 2019(12): 1859-1864 .
    19. 周家新,陈建勇,单志超,陈长康. 航空磁探中潜艇目标的联合估计检测方法研究. 兵工学报. 2018(05): 833-840 .
    20. 郭宁宁,盛业华,吕海洋,黄宝群,张思阳. 径向基函数神经网络的路网自动匹配算法. 测绘科学. 2018(03): 45-50 .
    21. 张瀚,李静,吕品,徐永志,刘格林. 六角格网的弧线矢量数据量化拟合方法. 计算机辅助设计与图形学学报. 2018(04): 557-567 .
    22. 邵世维,刘辉,肖立霞,王恒. 一种基于Fréchet距离的复杂线状要素匹配方法. 武汉大学学报(信息科学版). 2018(04): 516-521 .
    23. 苏满佳,张逸鸿,谢荣臻,朱海飞,管贻生,毛世鑫. 连续软体机器人的结构范型与形态复现. 机器人. 2018(05): 640-647+672 .
    24. 宗琴,姜树辉,刘艳霞. 多尺度矢量地图中模糊相似变换及其度量模型. 测绘科学. 2018(11): 72-78 .
    25. 郭文月,刘海砚,孙群,余岸竹,季晓林. 利用最长公共子序列度量线要素相似性的方法. 测绘科学技术学报. 2018(05): 518-523 .
    26. 郭宁宁,盛业华,黄宝群,吕海洋,张思阳. 基于人工神经网络的多特征因子路网匹配算法. 地球信息科学学报. 2016(09): 1153-1159 .
    27. 杨亚辉. 利用几何相似性快速测量鱼重的数学模型. 电子技术与软件工程. 2016(20): 182-183 .
    28. 逯跃锋,张奎,刘硕,吴跃,赵硕,李强,冯晨. 一种基于斜率差和方位角的矢量数据匹配算法. 山东大学学报(工学版). 2016(06): 31-39 .

    Other cited types(28)

Catalog

    Article views (1455) PDF downloads (47) Cited by(56)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return