CUI Xiaojie, WANG Jiayao, GONG Xianyong, ZHAO Yao. Hotspot Area Recognition by Using Fuzzy Density Clustering and Bidirectional Buffer[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 84-91. DOI: 10.13203/j.whugis20180358
Citation: CUI Xiaojie, WANG Jiayao, GONG Xianyong, ZHAO Yao. Hotspot Area Recognition by Using Fuzzy Density Clustering and Bidirectional Buffer[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 84-91. DOI: 10.13203/j.whugis20180358

Hotspot Area Recognition by Using Fuzzy Density Clustering and Bidirectional Buffer

Funds: 

The Key Projects of Consultation and Research of the Chinese Academy of Engineering 2017-XZ-13

More Information
  • Author Bio:

    CUI Xiaojie, PhD candidate, specializes in map distribution pattern recognition and cartographic generalization. E-mail: cuixiaojie1990@qq.com

  • Corresponding author:

    GONG Xianyong, lecturer, PhD. E-mail: gongxygis@whu.edu.cn

  • Received Date: September 12, 2018
  • Published Date: January 04, 2019
  • Obtaining geospatial knowledge such as aggregation mode (i.e. hotspot) by data mining is the basis and premise of geographic information intelligent service. The aggregation mode extraction from point group is the detection of hotspots and their boundaries (hotspot areas) essentially. This paper firstly analyzes the shortcomings of the DBSCAN (density-based spatial clustering of applications with noise) -convex hull method for hotspot area recognition, and then proposes an automatic method of hotspot area generation using fuzzy density clustering and bidirectional buffer. There are two parts in this method:①Based on the theory of fuzzy sets, the fuzzy membership is calculated to improve the DBSCAN; ②The boundaries of hotspots are generated using positive-negative buffer method according to the influence radius calculated by the fuzzy membership formula. The experimental results show that this method can reflect the spatial pattern of the scientific situation. Besides, noises can be distinguished from points, thus ensuring there are no noise points in the hotspot area. Moreover, the hotspot boundaries are not only continuous and flat, also can reflect the actual shape and range of reasonable hotspot areas. Compared with the DBSCAN-convex hull method and the kernel density-contour method, the hotspot area recognized by the method proposed in this paper is better.
  • [1]
    王家耀.时空大数据时代的地图学[J].测绘学报, 2017, 46(10):1226-1237 doi: 10.11947/j.AGCS.2017.20170308

    Wang Jiayao. Cartography in the Age of Spatial-Temporal Big Data[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1226-1237 doi: 10.11947/j.AGCS.2017.20170308
    [2]
    王家耀, 崔晓杰.创新驱动地理信息产业转型发展[M]//测绘地理信息蓝皮书: 测绘地理信息转型升级研究报告(2014).北京: 社会科学文献出版社, 2014: 201-217

    Wang Jiayao, Cui Xiaojie. Transformation and Development of Geoinformation Industry Driven by Innovation[M]//Blue Book of China's Surveying, Mapping and Geoinformation: Report on Transformation and Upgrading of Surveying, Mapping and Geoinformation (2014). Beijing: Social Sciences Academic Press, 2014: 201-217
    [3]
    龚健雅, 耿晶, 吴华意.地理空间知识服务概论[J].武汉大学学报·信息科学版, 2014, 39(8):883-890 http://ch.whu.edu.cn/CN/abstract/abstract3038.shtml

    Gong Jianya, Geng Jing, Wu Huayi. Geospatial Knowledge Service:A Review[J].Geomatics and Information Science of Wuhan University, 2014, 39(8):883-890 http://ch.whu.edu.cn/CN/abstract/abstract3038.shtml
    [4]
    王家耀, 崔晓杰. "互联网+"时代的地理时空大数据与智慧城市[M]//测绘地理信息蓝皮书: 新常态下的测绘地理信息研究报告(2015).北京: 社会科学文献出版社, 2015: 149-164

    Wang Jiayao, Cui Xiaojie."Internet+" Spatial and Temporal Big Data and Smart City[M]//Blue Book of China's Surveying, Mapping and Geoinformation: Report on Surveying, Mapping and Geoinformation Under the New Normal(2015). Beijing: Social Sciences Academic Press, 2015: 149-164
    [5]
    李德仁.从测绘学到地球空间信息智能服务科学[J].测绘学报, 2017, 46(10):1207-1212 doi: 10.11947/j.AGCS.2017.20170263

    Li Deren. From Geomatics to Geospatial Intelligent Service Science[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1207-1212 doi: 10.11947/j.AGCS.2017.20170263
    [6]
    武芳, 巩现勇, 杜佳威.地图制图综合回顾与前望[J].测绘学报, 2017, 46(10):1645-1664 doi: 10.11947/j.AGCS.2017.20170287

    Wu Fang, Gong Xianyong, Du Jiawei. Overview of the Research Progress in Automated Map Generalization[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1645-1664 doi: 10.11947/j.AGCS.2017.20170287
    [7]
    毛政元.集聚型空间点模式结构信息提取研究[J].测绘学报, 2007, 36(2):181-186 doi: 10.3321/j.issn:1001-1595.2007.02.012

    Mao Zhengyuan. The Study of Extracting Structure Information of a Clustered Spatial Point Pattern[J].Acta Geodaetica et Cartographica Sinica, 2007, 36(2):181-186 doi: 10.3321/j.issn:1001-1595.2007.02.012
    [8]
    Galton A, Duckham M. What is the Region Occupied by a Set of Points?[C]//International Conference on Geographic Information Science. Berlin, Heidelberg: Springer, 2006: 81-98
    [9]
    Duckham M, Kulik L, Worboys M, et al. Efficient Generation of Simple Polygons for Characterizing the Shape of a Set of Points in the Plane[J]. Pattern Recognition, 2008, 41(10):3224-3236 doi: 10.1016/j.patcog.2008.03.023
    [10]
    Liu Y, Yuan Y, Xiao D, et al. A Point-Set-Based Approximation for Areal Objects:A Case Study of Representing Localities[J]. Computers, Environment and Urban Systems, 2010, 34(1):28-39 doi: 10.1016/j.compenvurbsys.2009.05.001
    [11]
    Akdag F, Eick C F, Chen G. Creating Polygon Models for Spatial Clusters[C].International Symposium on Methodologies for Intelligent Systems, Roskilde, Denmark, 2014
    [12]
    Hollenstein L, Purves R. Exploring Place Through User-Generated Content:Using Flickr to Describe City Cores[J]. Journal of Spatial Information Science, 2010, 1(1):21-48 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_16f8d5446d9cccb51d12a0a769043824
    [13]
    许泽宁, 高晓路.基于电子地图兴趣点的城市建成区边界识别方法[J].地理学报, 2016, 71(6):928-939 http://d.old.wanfangdata.com.cn/Periodical/dlxb201606003

    Xu Zening, Gao Xiaolu. A Novel Method for Identifying the Boundary of Urban Built-up Areas with POI Data[J]. Acta Geographica Sinica, 2016, 71(6):928-939 http://d.old.wanfangdata.com.cn/Periodical/dlxb201606003
    [14]
    薛东前, 黄晶, 马蓓蓓, 等.西安市文化娱乐业的空间格局及热点区模式研究[J].地理学报, 2014, 69(4):541-552 http://d.old.wanfangdata.com.cn/Periodical/dlxb201404010

    Xue Dongqian, Huang Jing, Ma Beibei, et al. Spatial Distribution Characteristics and Hot Zone Patterns of Entertainment Industry in Xi'an[J]. Acta Geographica Sinica, 2014, 69(4):541-552 http://d.old.wanfangdata.com.cn/Periodical/dlxb201404010
    [15]
    陈鹏, 李欣, 胡啸峰, 等.北京市长安街沿线的扒窃案件高发区分析及防控对策[J].地理科学进展, 2015, 34(10):1250-1258 http://d.old.wanfangdata.com.cn/Periodical/dlkxjz201510005

    Chen Peng, Li Xin, Hu Xiaofeng, et al. Clustering Pattern Analysis and Prevention Strategies to Pickpocketing Offence Along the Chang'an Street in Beijing[J]. Progress in Geography, 2015, 34(10):1250-1258 http://d.old.wanfangdata.com.cn/Periodical/dlkxjz201510005
    [16]
    Shen J, Liu X, Chen M. Discovering Spatial and Temporal Patterns from Taxi-Based Floating Car Data:A Case Study from Nanjing[J]. GIScience & Remote Sensing, 2017, 54(5):617-638 doi: 10.1080/15481603.2017.1309092
    [17]
    田晶, 熊富全, 程雪萍, 等.道路密度分区及其在道路选取质量评价中的应用[J].武汉大学学报·信息科学版, 2016, 41(9):1225-1231 http://ch.whu.edu.cn/CN/abstract/abstract5532.shtml

    Tian Jing, Xiong Fuquan, Cheng Xueping, et al. Road Density Partition and Its Application in Evaluation of Road Selection[J].Geomatics and Information Science of Wuhan University, 2016, 41(9):1225-1231 http://ch.whu.edu.cn/CN/abstract/abstract5532.shtml
    [18]
    吴康敏, 张虹鸥, 王洋, 等.广州市多类型商业中心识别与空间模式[J].地理科学进展, 2016, 35(8):963-974 http://d.old.wanfangdata.com.cn/Periodical/dlkxjz201608005

    Wu Kangmin, Zhang Hong'ou, Wang Yang, et al. Identify of the Multiple Types of Commercial Center in Guangzhou and Its Spatial Pattern[J].Progress in Geography, 2016, 35(8):963-974 http://d.old.wanfangdata.com.cn/Periodical/dlkxjz201608005
    [19]
    Yu W, Ai T, Shao S. The Analysis and Delimitation of Central Business District Using Network Kernel Density Estimation[J].Journal of Transport Geography, 2015, 45(1):32-47 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e2ca5a8d725aa3d21f2ee97be1086d53
    [20]
    Tang M, Zhou Y, Cui P, et al. Discovery of Migration Habitats and Routes of Wild Bird Species by Clustering and Association Analysis[C].International Conference on Advanced Data Mining and Applications, Beijing, China, 2009
    [21]
    Hu Y, Gao S, Janowicz K, et al. Extracting and Understanding Urban Areas of Interest Using Geotagged Photos[J]. Computers, Environment and Urban Systems, 2015, 54:240-254 doi: 10.1016/j.compenvurbsys.2015.09.001
    [22]
    Gao S, Janowicz K, Montello D R, et al. A Data-Synthesis-Driven Method for Detecting and Extracting Vague Cognitive Regions[J]. International Journal of Geographical Information Systems, 2017, 31(6):1245-1271 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f8881184ea571e48f056220884525381
    [23]
    高凯, 杨敏, 张跃鹏.保持空间分布特征的散列式居民地综合选取方法[J].测绘科学技术学报, 2015, 32(6):626-630 doi: 10.3969/j.issn.1673-6338.2015.06.016

    Gao Kai, Yang Min, Zhang Yuepeng. A Method of Automatic Selection of Hash-Style Habitation with Spatial Distribution Characteristics Preserved[J].Journal of Geomatics Science and Technology, 2015, 32(6):626-630 doi: 10.3969/j.issn.1673-6338.2015.06.016
    [24]
    Miller H, Han J. Geographic Data Mining and Knowledge Discovery[M]. 2nd ed. New York:CRC, 2009
    [25]
    Deng M, Liu Q, Cheng T, et al. An Adaptive Spatial Clustering Algorithm Based on Delaunay Triangulation[J]. Computers Environment & Urban Systems, 2011, 35(4):320-332 http://www.sciencedirect.com/science/article/pii/S019897151100024X
    [26]
    Liu Q, Deng M, Shi Y, et al. A Density-Based Spatial Clustering Algorithm Considering Both Spatial Proximity and Attribute Similarity[J]. Computers and Geosciences, 2012, 46(3):296-309 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0228067695/
    [27]
    Ester M, Kriegel H P, Sander J, et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C]//Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland: AAAI Press, 1996: 226-231
    [28]
    贺丹, 陈松灿.基于DC规划的鲁棒模糊核聚类算法[J].模式识别与人工智能, 2016, 29(8):744-750 http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201608009

    He Dan, Chen Songcan. Robust Kernal-Based Fuzzy Clustering Using Difference of Convex Functions Programming[J].Pattern Recognition and Artificial Intelligence, 2016, 29(8):744-750 http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201608009
    [29]
    Nasibov E N, Ulutagay G. Robustness of Density-Based Clustering Methods with Various Neighborhood Relations[J]. Fuzzy Sets and Systems, 2009, 160(24):3601-3615 doi: 10.1016/j.fss.2009.06.012
    [30]
    郭仁忠.空间分析[M]. 2版.北京:高等教育出版社, 2001

    Guo Renzhong. Spatial Analysis[M]. 2nd ed. Beijing:Higher Education Press, 2001
    [31]
    禹文豪, 艾廷华, 杨敏, 等.利用核密度与空间自相关进行城市设施兴趣点分布热点探测[J].武汉大学学报·信息科学版, 2016, 41(2):221-227 http://ch.whu.edu.cn/CN/abstract/abstract3459.shtml

    Yu Wenhao, Ai Tinghua, Yang Min, et al. Detecting "Hot Spots" of Facility POIs Based on Kernel Density Estimation and Spatial Autocorrelation Technique[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2):221-227 http://ch.whu.edu.cn/CN/abstract/abstract3459.shtml
  • Related Articles

    [1]MA Jingzhen, SUN Qun, WEN Bowei, ZHOU Zhao, LU Chuanwei, LÜ Zheng, SUN Shijie. A Hybrid Multi-feature Road Network Selection Method Based on Trajectory Data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(7): 1009-1016. DOI: 10.13203/j.whugis20190480
    [2]YANG Hao, HE Zongyi, CHEN Huayang, ZHOU Zhuanxiang, FAN Yong. A Method for Automatic Generalization of Urban Settlements Considering Road Network[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 965-970. DOI: 10.13203/j.whugis20160094
    [3]CAO Weiwei, ZHANG Hong, HE Jing, LAN Tian. Road Selection Considering Structural and Geometric Properties[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 520-524. DOI: 10.13203/j.whugis20140862
    [4]YANG Lin, WAN Bo, WANG Run, ZUO Zejun, AN Xiaoya. Matching Road Network Based on the Structural Relationship Constraint of Hierarchical Strokes[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1661-1668. DOI: 10.13203/j.whugis20140295
    [5]tianjin g, renchan g, wangyihen g, xiongfu q uan, leiyin g zhe. imp rovementofself-best-fitstrate gyforstrokebuildin g[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9): 1209-1214. DOI: 10.13203/j .whu g is20140455
    [6]LIU Hailong, QIAN Haizhong, WANG Xiao, HE Haiwei. Road Networks Global Matching Method Using Analytical Hierarchy Process[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 644-651. DOI: 10.13203/j.whugis20130350
    [7]TIAN Jing, HE Qingsong, YAN Fen. Formalization and New Algorithm of stroke Generation in Road Networks[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 556-560. DOI: 10.13203/j.whugis20120127
    [8]TIAN Jing, WU Dang, ZHAN Yifei. Degree Correlation of Urban Street Networks[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 332-334. DOI: 10.13203/j.whugis20120675
    [9]CHEN Jun, HU Yungang, ZHAO Renliang, LI Zhilin. Road Data Updating Based on Map Generalization[J]. Geomatics and Information Science of Wuhan University, 2007, 32(11): 1022-1027.
    [10]HUANG Shuqiang, SUN Chengzhi, FU Zhongliang. License Plate Binarization Algorithm Based on the Features of Characters' Strokes[J]. Geomatics and Information Science of Wuhan University, 2003, 28(1): 71-73,79.
  • Cited by

    Periodical cited type(9)

    1. 赵天明,孙群,马京振,张付兵,温伯威. 融合路段和stroke特征的道路自动选取方法. 地球信息科学学报. 2024(12): 2673-2685 .
    2. 郭漩,钱海忠,王骁,刘俊楠,任琰,赵钰哲,陈国庆. 多源道路智能选取的本体知识推理方法. 测绘学报. 2022(02): 279-289 .
    3. 马京振,孙群,温伯威,周炤,陆川伟,吕峥,孙士杰. 结合轨迹数据的混合多特征道路网选取方法. 武汉大学学报(信息科学版). 2022(07): 1009-1016 .
    4. 朱余德,杨敏,晏雄锋. 利用图卷积神经网络的道路网选取方法. 北京测绘. 2022(11): 1455-1459 .
    5. 韩远,王中辉,徐智邦,余贝贝. 结合引力场理论的道路自动选取方法. 测绘科学. 2021(01): 189-195 .
    6. 韩远,王中辉,禄小敏. POI辅助下的道路选取. 测绘科学. 2021(04): 165-171 .
    7. 陈晓东,余劲松弟. 顾及语义关联信息的道路选取方法. 海南大学学报(自然科学版). 2021(03): 227-234 .
    8. 王晓妍. 土地利用图中线状要素综合的质量评价. 测绘通报. 2020(04): 116-120 .
    9. 冯云,朱素华,孙益清,王金鑫. 郑州轨道交通5号线开通对城市交通格局的影响. 城市勘测. 2020(04): 54-58 .

    Other cited types(11)

Catalog

    Article views PDF downloads Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return