KANG Junfeng, LI Shuang, FANG Lei. Land Use Change Prediction Method Based on CA-Markov Model Under Cloud Computing Environment[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 1021-1026, 1034. DOI: 10.13203/j.whugis20180319
Citation: KANG Junfeng, LI Shuang, FANG Lei. Land Use Change Prediction Method Based on CA-Markov Model Under Cloud Computing Environment[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 1021-1026, 1034. DOI: 10.13203/j.whugis20180319

Land Use Change Prediction Method Based on CA-Markov Model Under Cloud Computing Environment

Funds: 

The National Key Research and Development Program of China 2016YFC0803105

the National Natural Science Foundation of China 41701462

Chinese Scholarship Council Foundation 201808360065

Jiangxi Provincial Department of Education Science and Technology Research Projects 3204704062

More Information
  • Author Bio:

    KANG Junfeng, PhD, associate professor, specializes in researches of high-performance GIS algorithms and applications. E-mail: junfeng.kang@jxust.edu.cn

  • Corresponding author:

    FANG Lei, PhD. E-mail: fanglei@fudan.edu.cn

  • Received Date: June 19, 2019
  • Published Date: July 29, 2020
  • Traditional land-use change prediction methods are usually implemented by serial algorithms or semi-manual methods and they were often inefficient. This paper develops a parallel land-use change prediction method based on cloud lomputing (Cloud-CMLP), the map reduce programming model is used to parallelize and extend the cellular automata(CA)-Markov model. Taking Hangzhou as a study area, the experiments are conducted as follows: ① Efficiency tests are conducted to compare the core algorithms of Cloud-CMLP under the different number of data. ② The Cloud-CMLP method is used to simulate the land-use change in 2013, and the simulated results are compared with the 2013 remote sensing image classification results to verify the validity of Cloud-CMLP method. ③ The land-use change in 2020 is predicted and analyzed by using Cloud-CMLP, and the predicted results show that the land area of urban construction is rising rapidly and mainly come from the conversion of agricultural land.
  • [1]
    李秀彬.全球环境变化研究的核心领域—土地利用/土地覆被变化的国际研究动向[J].地理学报, 1996, 51(6):558-565

    Li Xiubin. A Review of the International Researches on Land Use/Land Cover Change[J]. Acta Geographica Sinica, 1996, 51(6): 558–565
    [2]
    Wijesekara G N, Farjad B, Cupta A, et al. A Comprehensive Land-Use/Hydrological Modeling System for Scenario Simulations in the Elbow River Watershed, Alberta, Canada[J]. Environmental Mana-gement, 2014, 53(2): 357-381 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0d74809ebe15ec588c323350c7e60b7b
    [3]
    Verburg P H, Overmars K P. Combining Top-Down and Bottom-Up Dynamics in Land Use Modeling: Exploring the Future of Abandoned Farmlands in Europe with the Dyna-CLUE Model[J]. Landscape Ecology, 2009, 24(9): 1 167 doi: 10.1007/s10980-009-9355-7
    [4]
    Luo G, Yin C, Chen X, et al. Combining System Dynamic Model and CLUE-S Model to Improve Land Use Scenario Analyses at Regional Scale: A Case Study of Sangong Watershed in Xinjiang, China[J]. Ecological Complexity, 2010, 7(2): 198-207
    [5]
    Clarke K C, Hoppen S, Gaydos L, et al. Modifying Historical Urbanization in the San Franeisco Bay Area[J]. Environment and Planning B: Planning and Design, 1997, 24(2): 247-261 doi: 10.1068/b240247
    [6]
    Fu X, Wang X H, Yang Y J. Deriving Suitability Factors for CA-Markov Land Use Simulation Model Based on Local Historical Data[J]. Journal of Environmental Management, 2018, 206: 10-19 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4cbce65eb9c77d2d6955a3772e46fdb6
    [7]
    Le Q B, Park S J, Vlek P L G, et al. Land-Use Dynamic Simulator (LUDAS): A Multi-Agent System Model for Simulating Spatio-Temporal Dynamics of Coupled Human-Landscape System. I. Structure and Theoretical Specification[J]. Ecological Informatics, 2008, 3(2): 135-153 doi: 10.1016/j.ecoinf.2008.04.003
    [8]
    Dietzel C, Clarke K C. Toward Optimal Calibration of the SLEUTH Land Use Change Model[J]. Transactions in GIS, 2007, 11(1): 29-45 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1467-9671.2007.01031.x
    [9]
    Hu Z, Lo C P. Modeling Urban Growth in Atlanta Using Logistic Regression[J]. Computers, Environment and Urban Systems, 2007, 31(6): 667-688 doi: 10.1016/j.compenvurbsys.2006.11.001
    [10]
    Memarian H, Balasundram S K, Talib J B, et al. Validation of CA-Markov for Simulation of Land Use and Cover Change in the Langat Basin, Malaysia[J]. Journal of Geographic Information System, 2012, 4(6): 542-554 doi: 10.4236/jgis.2012.46059
    [11]
    Liu X H, Andersson C.Assessing the Impact of Temporal Dynamics on Land-Use Change Modeling[J]. Computers, Environment and Urban Systems, 2004, 28:107-124 doi: 10.1016/S0198-9715(02)00045-5
    [12]
    Keeley J E, Zedler P H. Large, High-Intensity Fire Events in Southern California Shrublands: Debunking the Fine-Grain Age Patch Model[J]. Ecological Applications, 2009, 19(1): 69-94
    [13]
    Araya Y H. Analysis and Modeling of Urban Land Cover Change in Setúbal and Sesimbra, Portugal[J]. Remote Sensing, 2010, 2(6): 1 549-1 563 doi: 10.3390/rs2061549
    [14]
    Guan Q F, Clarke K C. A General-Purpose Parallel Raster Processing Programming Library Test Application Using a Geographic Cellula Automata Model[J]. International Journal of Geographical Information Science, 2010, 24 (5):695-722 doi: 10.1080/13658810902984228
    [15]
    Li X, Zhang X H, Ye H A, et al. Parallel Cellular Automata for Large-Scale Urban Simulation Using Load-Balancing Techniques[J]. International Journal of Geographical Information Science, 2010, 24(6):803-820 doi: 10.1080/13658810903107464
    [16]
    李丹, 黎夏, 刘小平, 等. GPU-CA模型及大尺度土地利用变化模拟[J].科学通报, 2012(11): 959-969 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201211011

    Li Dan, Li Xia, Liu Xiaoping, et al. GPU-CA Model and Large-scale Land Use Change Simulation[J]. Chinese Science Bulletin, 2012(11):959-969 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201211011
    [17]
    Wang H J, Zhang A Q, Zhang W T, et al.A High-Performance Cellular Automata Model for Urban Simulation Based on Vectorization and Parallel Computing Technology[J]. International Journal of Geographical Information Science, 2018, 32(2): 399-424 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/13658816.2017.1390118
    [18]
    Guan Q F, Shi X, Huang M Q, et al. A Hybrid Parallel Cellular Automata Model for Urban Growth Simulation over GPU/CPU Heterogeneous Architectures[J]. International Journal of Geographical Information Science, 2016, 30 (3): 494-514 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/13658816.2015.1039538
    [19]
    姚晓闯, 杨建宇, 李林, 等.云环境下海量空间矢量数据并行划分算法[J].武汉大学学报·信息科学版, 2018, 43(7):1 092-1 097 doi: 10.13203/j.whugis20160271

    Yao Xiaochuang, Yang Jianyu, Li Lin, et al. Parallel Algorithm for Partitioning Massive Spatial Vector Data in Cloud Environment[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7):1 092-1 097 doi: 10.13203/j.whugis20160271
    [20]
    Almeer M H. Cloud Hadoop Map Reduce for Remote Sensing Image Analysis[J]. Journal of Emerging Trends in Computing and Information Science, 2012, 3(4):637-644
    [21]
    吴翼平.多准则评价方法的评价[J].决策与决策支持系统, 1994(1):74-80 http://d.old.wanfangdata.com.cn/Periodical/xnjtdxxb200301021

    Wu Yiping. The Evaluation of the Multieriteria Evaluation Methods[J]. Journal of Decision and Decision Support Systems, 1994(1):74-80 http://d.old.wanfangdata.com.cn/Periodical/xnjtdxxb200301021
  • Related Articles

    [1]WANG Yinjie, LIU Dianfeng. Multi‐scenario Simulation of Land Use Change and Its Effects Under Requisition‐Compensation Balance of Arable Land[J]. Geomatics and Information Science of Wuhan University, 2023, 48(9): 1499-1511. DOI: 10.13203/j.whugis20210144
    [2]YUAN Xiaolei, WANG Chao, LI Boyan, WANG Wei, CHEN Nengcheng. Review of the Driving Forces and Impacts of Land Use/Cover Change in the Yangtze River Basin[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1241-1255. DOI: 10.13203/j.whugis20210368
    [3]FENG Mengzhe, HE Jianhua, TANG Qinghui. Counterfactual Scenario Simulation and Evaluation of the Land-Use and Land-Cover Change of Jiayu County[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1122-1125.
    [4]CHEN Jiangping, HAN Qing, HU Jing, ZHANG Penglin. Multi-scale Correlation Analysis on Land-Use Change and Economic Factors in a Typical Region of Wavelet Transforming[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1118-1121.
    [5]NONG Yu, WANG Kun, DU Qingyun. Modeling Land Use Change Using Multinomial Logistic Regression[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6): 743-746.
    [6]XIONG Hua, LIU Yaolin, CHE Shanshan, ZHANG Junfeng. Land Use Change Simulation Model Based on Support Vector Machine[J]. Geomatics and Information Science of Wuhan University, 2009, 34(3): 366-369.
    [7]WANG Hanhua, LIU Yanfang. Optimal Allocation of Land Resources Based on MOP-CA[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 174-177.
    [8]YANG Guoqing, LIU Yaolin, WU Zhifeng. Analysis and Simulation of Land-Use Temporal and Spatial Pattern Based on CA-Markov Model[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5): 414-418.
    [9]ZHANG Hong, SHU Ning, . Application of Multitemporal Composition and Classification to Land Use Change Detection[J]. Geomatics and Information Science of Wuhan University, 2005, 30(2): 131-134.
    [10]XIAO Ping, LI Deren. Land Use/Cover Change Detection Based on Artificial Neural Network[J]. Geomatics and Information Science of Wuhan University, 2002, 27(6): 586-590.
  • Cited by

    Periodical cited type(14)

    1. 许静,廖星凯,甘崎旭,周茅先. 耦合GMOP与FLUS模型的黄河流域甘肃段生态风险评估与预测. 生态学杂志. 2024(05): 1498-1508 .
    2. 孙方飞,葛小三,金满库. 基于CA-Markov和InVEST模型的昆明市土地利用与生境质量时空变化及预测. 地域研究与开发. 2024(03): 159-165 .
    3. 贾琦,刘毅洁,张超玉,尹泽凯. 郑州大都市区“生产-生活-生态”用地转型图谱特征分析. 生态科学. 2024(05): 90-101 .
    4. 杨顺威. 基于CA-Markov模型的焦作市土地利用变化分析及预测. 中南农业科技. 2024(12): 116-123 .
    5. 王娇娇,尹小君,刘陕南,王帝盟. 基于深度学习的玛纳斯土地利用时空格局变化与预测. 干旱区研究. 2023(01): 69-77 .
    6. 焦洪赞,徐子贤,刘学军. 耕地安全视角下的城镇开发边界预测及评价. 测绘地理信息. 2023(02): 102-106 .
    7. 王寅杰,刘殿锋. 顾及耕地占补平衡的土地利用变化及其效应多情景模拟. 武汉大学学报(信息科学版). 2023(09): 1499-1511 .
    8. 王之昱. 大型河道工程对流域LUCC的影响评价——以淮河入海水道二期工程为例. 湖北农业科学. 2022(05): 139-147 .
    9. 陈奕,阙翔,崔爱宁. 福建省滨海地区土地覆盖时空变化特征. 内江师范学院学报. 2022(08): 63-69 .
    10. 穆振侠,张玉祥,田晓杰. 近19年乌苏市土地利用变化规律及其驱动因素研究. 地下水. 2022(06): 226-231 .
    11. 幸瑞燊,周启刚. 基于Ann-CA-Markov模型的生态空间预测模拟:以重庆市万州区为例. 生态与农村环境学报. 2021(06): 740-750 .
    12. 王丽霞,张海旭,刘招,张双成,孔金玲,高俪倩. 一种净初级生产力格局模拟及预测耦合模型. 武汉大学学报(信息科学版). 2021(11): 1756-1765 .
    13. 田清,詹晨宇,冯佳欣,邵威. 基于ANN-CA模型的国土空间规划双评价情景分析. 农村经济与科技. 2021(19): 39-41 .
    14. 周伟. 基于Markov-FLUS模型的翁源县土地利用变化模拟. 科学技术创新. 2021(35): 19-22 .

    Other cited types(12)

Catalog

    Article views (1038) PDF downloads (65) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return