HU Chao, WANG Qianxin, MAO Ya. An Improved Model for the Observed GNSS Ultra-rapid Orbit Based on DOP Values[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 28-37. DOI: 10.13203/j.whugis20180310
Citation: HU Chao, WANG Qianxin, MAO Ya. An Improved Model for the Observed GNSS Ultra-rapid Orbit Based on DOP Values[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 28-37. DOI: 10.13203/j.whugis20180310

An Improved Model for the Observed GNSS Ultra-rapid Orbit Based on DOP Values

Funds: 

The National Natural Science Foundation of China 41874039

the Jiangsu Natural Science Foundation BK20181361

Postgraduate Research & Practice Innovation Program of Jiangsu Province SJCX18_0668

More Information
  • Author Bio:

    HU Chao, PhD candidate, specializes in the theories and methods of GNSS orbit determination. E-mail: chaohu2014gnss@163.com

  • Corresponding author:

    WANG Qianxin, PhD, professor. E-mail: wqx@cumt.edu.cn

  • Received Date: March 07, 2019
  • Published Date: January 04, 2020
  • For ultra-rapid orbits provided by the Global Navigation Satellite System (GNSS), the key parameters, accuracy and timeliness, must be taken into consideration for real-time and near real-time navigation and positioning applications. With reference to the low accuracy in observed orbits (last 3 hours), an improved model based on the orbit dilution of precision (DOP) values is proposed by building the function models between DOP values and the orbit accuracy. Firstly, the prediction model of the DOP values is set based on observations and Akaike information criterion. Secondly, the function model between orbit accuracy and DOP values is built.At last, the predicted DOP values with highly precision are taken into orbit correction model to improve the observed ultra-rapid orbit accuracy. With the comparison experiments, it is found that there is a correlation between the DOP values of orbit parameter and its precision, and the variation trend of DOP values can be fitted based on polynomial model. Furthermore, to verify the availability of improved model, two experiment schemes were designed from the aspect of the length of observations and prediction models. In addition, there are no significant differences of orbit correction for different function models. With 10-day orbit determination experiments, the results show that the observed ultra-rapid orbit errors, generated by insufficient observations, can be corrected by 12.4%-22.0% for the last 3 hours of the observed orbits. Thus, the observed ultra-orbit correction model of our proposed is meaningful and can improve the ultra-rapid orbit accuracy of GNSS analysis center.
  • [1]
    Teun I P, Joosten P, Odijk D. The Reliability of GPS Ambiguity Resolution[J]. GPS Solutions, 1999, 2(3):63-69 doi: 10.1007/PL00012758
    [2]
    Li Y, Gao Y, Li B. An Impact Analysis of Arc Length on Orbit Prediction and Clock Estimation for PPP Ambiguity Resolution[J]. GPS Solutions, 2015, 19(2):201-213 doi: 10.1007/s10291-014-0380-x
    [3]
    Choi K, Ray J, Griffiths J, et al. Evaluation of GPS Orbit Prediction Strategies for the IGS Ultra-rapid Products[J]. GPS Solutions, 2013, 17(3):403-412 doi: 10.1007/s10291-012-0288-2
    [4]
    Li X, Ge M, Douša J, et al. Real-Time Precise Point Positioning Regional Augmentation for Large GPS Reference Networks[J]. GPS Solutions, 2014, 18(1):61-71 doi: 10.1007/s10291-013-0310-3
    [5]
    Stacey P, Ziebart M.Long-Term Extended Ephemeris Prediction for Mobile Devices[J].Proceedings of International Technical Meeting of the Satellite Division of the Institute of Navigation, 2011, 28(2):3235-3244
    [6]
    Wang Q, Hu C, Xu T, et al. Impacts of Earth Rotation Parameters on GNSS Ultra-rapid Orbit Prediction:Derivation and Real-Time Correction[J]. Advances in Space Research, 2017, 60(9):2855-2870 http://www.researchgate.net/publication/320005572_Impacts_of_Earth_rotation_parameters_on_GNSS_ultra-rapid_orbit_prediction_Derivation_and_real-time_correction
    [7]
    胡超, 王潜心, 王中元, 等.一种基于观测方程GDOP值的优化选站模型[J].武汉大学学报·信息科学版, 2017, 42(6):838-844 http://ch.whu.edu.cn/CN/abstract/abstract5761.shtml

    Hu Chao, Wang Qianxin, Wang Zhongyuan, et al. An Optimal Stations Selected Model Based on the GDOP Value of Observation Equation[J].Geomatics and Information Science of Wuhan University, 2017, 42(6):838-844 http://ch.whu.edu.cn/CN/abstract/abstract5761.shtml
    [8]
    Ge M, Gendt G, Dick G, et al. A New Data Processing Strategy for Huge GNSS Global Networks[J]. Journal of Geodesy, 2006, 80:199-203 doi: 10.1007/s00190-006-0044-x
    [9]
    Chen H, Jiang W, Ge M, et al. An Enhanced Strategy for GNSS Data Processing of Massive Networks[J]. Journal of Geodesy, 2014, 88:857-867 doi: 10.1007/s00190-014-0727-7
    [10]
    Blewitt G. Fixed Point Theorems of GPS Carrier Phase Ambiguity Resolution and Their Application to Massive Network Processing:Ambizap[J]. Journal of Geophysical Research Solid Earth, 2008, 113(B12):410-417 doi: 10.1029-2008JB005736/
    [11]
    陈俊平, 张益泽, 谢益炳, 等.超大观测网络及多GNSS系统的快速数据处理[J].武汉大学学报·信息科学版, 2014, 39(3):253-257 http://ch.whu.edu.cn/CN/abstract/abstract2903.shtml

    Chen Junping, Zhang Yize, Xie Yibing, et al. Rapid Data Processing of Huge Networks and Multi-GNSS Constellation[J].Geomatics and Information Science of Wuhan University, 2014, 39(3):253-257 http://ch.whu.edu.cn/CN/abstract/abstract2903.shtml
    [12]
    Blanco-Delgado N, Nunes F, Seco-Granados G. On the Relation Between GDOP and the Volume Described by the User-to-Satellite Unit Vectors for GNSS Positioning[J]. GPS Solutions, 2017, 21(3):1139-1147 doi: 10.1007/s10291-016-0592-3
    [13]
    Yarlagadda R, Ali I, Al-Dhahir N, et al. GPS GDOP Metric[J]. IEEE Proceedings-Radar, Sonar and Navigation, 2000, 147(5):259-264 doi: 10.1049/ip-rsn:20000554
    [14]
    Wang Q, Dang Y, Xu T. The Method of Earth Rotation Parameter Determination Using GNSS Observations and Precision Analysis[J]. Lecture Notes in Electrical Engineering, 2013, 243:247-256 http://cpfd.cnki.com.cn/Article/CPFDTOTAL-WXDH201305001023.htm
    [15]
    Zhang L, Dang Y, Xue S, et al. The Optimal Distribution Strategy of BeiDou Monitoring Stations for GEO Precise Orbit Determination[C].China Satellite Navigation Conference (CSNC), Heidelberg, German, 2015.
    [16]
    Dvorkin V, Karutin S. Optimization of the Global Network of Tracking Stations to Provide GLONASS Users with Precision Navigation and Timing Service[J]. Gyroscopy and Navigation, 2013, 4:181-187 doi: 10.1134/S2075108713040056
    [17]
    Wang Q, Hu C, Mao Y. Correction Method for the Observed Global Navigation Satellite System Ultra-rapid Orbit Based on Dilution of Precision Values[J]. Sensors, 2018, 18(11):3900-3910 doi: 10.3390/s18113900
  • Related Articles

    [1]HUANG Motao, OUYANG Yongzhong, BIAN Shaofeng, LI Shanshan, LI Mingsan, LU Xiuping, WANG Weiping, DONG Chao, TANG Minqiang, HONG Lidan, HOU Guangchao. Analysis and Reflections on the Development of Underwater Gravity-Aided Inertial Navigation Technology in the United States and Russia[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 1977-1991. DOI: 10.13203/j.whugis20240228
    [2]LI Qingquan, CHEN Ruizhe, TU Wei, CHEN Zhipeng, ZHANG Bochen, YAN Aiguo, YIN Pengcheng. Real-Time Vision-Based Deformation Measurement of Long-Span Bridge with Inertial Sensors[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1834-1843. DOI: 10.13203/j.whugis20230006
    [3]WU Yanxiong, TENG Yuntian, WU Qiong, XU Xing, ZHANG Bing. Error Correction Model and Uncertainty Analysis of the Shipborne Absolute Gravity Measurement System[J]. Geomatics and Information Science of Wuhan University, 2022, 47(4): 492-500. DOI: 10.13203/j.whugis20190412
    [4]ZHA Feng, HE Hongyang, LI Zhiwei, LI Jingshu. A SINS Initial Alignment Method Using Improved Parameter Identification[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 974-979. DOI: 10.13203/j.whugis20180312
    [5]GUAN Bin, SUN Zhongmiao, WU Fumei, LIU Xiaogang. Influence of Horizontal Disturbing Gravity on Position Error in Inertial Navigation Systems[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1474-1481. DOI: 10.13203/j.whugis20160006
    [6]QIN Fangjun, LI An, XU Jiangning. Analysis of Errors of Rotating Modulation INS Effected by Angular Motion of Vehicle[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 831-833.
    [7]QIN Fangjun, XU Jiangning, LI An. A New Calculative Method for Gyro-Free Inertial Navigation System Using 9Accelerometers[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 278-281.
    [8]OUYANG Yongzhong, LU Xiuping, HUANG Motao, ZHAI Guojun. An Integrated Method for Compensating the Systematic Errors of Marine and Airborne Measurements from L&R Gravimeter[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5): 625-629.
    [9]JIN Jihang, BIAN Shaofeng. Analysis of Inertial Navigation System Positioning Error Caused by Gravity Disturbance[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 30-32.
    [10]YANG Tao, WANG Wei, ZHU Zhiqin. Analysis and Verification of Time Synchronization Error in GPS/SINS Integrated System[J]. Geomatics and Information Science of Wuhan University, 2009, 34(10): 1181-1184.

Catalog

    Article views (1636) PDF downloads (186) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return