YANG Bisheng, LI Jianping. Implementation of a Low-Cost Mini-UAV Laser Scanning System[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1972-1978. DOI: 10.13203/j.whugis20180265
Citation: YANG Bisheng, LI Jianping. Implementation of a Low-Cost Mini-UAV Laser Scanning System[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1972-1978. DOI: 10.13203/j.whugis20180265

Implementation of a Low-Cost Mini-UAV Laser Scanning System

Funds: 

The National Science Fund for Distinguished Young Scholars 41725005

the National Natural Science Foundation of China 41531177

the Project of Yangtze River Scholar Distinguished Professor 

More Information
  • Author Bio:

    YANG Bisheng, PhD, professor, National Distinguished Young Scholars, specializes in UAV photogrammetry and 3D reconstruction, point cloud processing, and GIS applications. E-mail: bshyang@whu.edu.cn

  • Received Date: August 08, 2018
  • Published Date: December 04, 2018
  • Mini-UAV laser scanning system can be applied to the high precision earth observation, which is an active area in the field of mobile mapping. However, due to the limitation of payload and battery consumption of a mini-UAV (maximum payload is less than 5 kg), and the high cost of the sensors, a tradeoff must be made between cost, weight, and accuracy when designing of the mini-UAV laser scanning system. To realize the high precision and low-cost mobile mapping, this paper designs a low-cost mini-UAV laser scanning system:Luojia Kylin Cloud. This system contains several low-cost sensors, including MEMS (micro electro mechanical system) based IMU (inertial measurement unit), global shutter camera, wide angle lens and 16-line laser scanner. Firstly, this paper proposes an IMU aided bundle adjustment to improve the accuracy of the low-cost MEMS based IMU. Secondly, this paper proposes a boresight self-calibration algorithm for the laser scanner based on the consistence of the depth map generated by MVS(multi-view stereo) and projection of the laser measurement. At last, the laser point clouds are generated by using the estimated states a boresight parameters. To evaluate the accuracy of Luojia Kylin Cloud laser scanning system, study area in Wuhan University is selected for point cloud collection, and a lot of ground check points are measured. The result shows that the average error of the check points is 17.8 cm, which demonstrates the high accuracy and robustness of the proposed system.
  • [1]
    Yang B, Huang R, Dong Z, et al. Two-Step Adaptive Extraction Method for Ground Points and Breaklines from LiDAR Point Clouds[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119:373-389 doi: 10.1016/j.isprsjprs.2016.07.002
    [2]
    Yang B, Huang R, Li J, et al. Automated Reconstruction of Building LoDs from Airborne LiDAR Point Clouds Using an Improved Morphological Scale Space[J]. Remote Sensing, 2016, 9:14, doi: 10.3390/rs9010014
    [3]
    Dong Z, Yang B, Hu P, et al. An Efficient Global Energy Optimization Approach for Robust 3D Plane Segmentation of Point Cloud[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 137:122-133 http://adsabs.harvard.edu/abs/2018JPRS..137..112D
    [4]
    Li J, Yang B, Chen C, et al. Automatic Registration of Panoramic Image Sequence and Mobile Laser Scanning Data Using Semantic Features[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 136:41-57 doi: 10.1016/j.isprsjprs.2017.12.005
    [5]
    Chen C, Yang B. Dynamic Occlusion Detection and Inpainting of InSitu Captured Terrestrial Laser Scanning Point Clouds Sequence[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119:90-107 doi: 10.1016/j.isprsjprs.2016.05.007
    [6]
    梁福逊, 杨必胜, 黄荣刚, 等.基于多源点云的建筑物立面太阳能潜力估计[J].测绘学报, 2018, 47(2):225-233 http://d.old.wanfangdata.com.cn/Periodical/chxb201802011

    Liang Fuxun, Yang Bisheng, Huang Ronggang, et al. Facade Solar Potential Analysis Using Multisource Point Cloud[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2):225-233 http://d.old.wanfangdata.com.cn/Periodical/chxb201802011
    [7]
    Yang B, Dai W, Dong Z, et al. Automatic Forest Mapping at Individual Tree Levels from Terrestrial Laser Scanning Point Clouds with a Hierarchical Minimum Cut Method[J].Remote Sensing, 2016, 8:372 doi: 10.3390/rs8050372
    [8]
    Jaakkola A, Hyyppä J, Kukko A, et al. A Low-Cost Multi-sensoral Mobile Mapping System and Its Feasibility for Tree Measurements[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65:514-522 doi: 10.1016/j.isprsjprs.2010.08.002
    [9]
    Wallace L, Lucieer A, Watson C, et al. Development of a UAV-LiDAR System with Application to Forest Inventory[J].Remote Sensing, 2012, 4:1519-1543 doi: 10.3390/rs4061519
    [10]
    Yang B, Chen C. Automatic Registration of UAV-Borne Sequent Images and LiDAR Data[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101:262-274 doi: 10.1016/j.isprsjprs.2014.12.025
    [11]
    Skaloud J, Lichti D. Rigorous Approach to Bore-Sight Self-Calibration in Airborne Laser Scanning[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 61:47-59 doi: 10.1016/j.isprsjprs.2006.07.003
    [12]
    Filin S. Recovery of Systematic Biases in Laser Altimetry Data Using Natural Surfaces[J].Photogrammetric Engineering and Remote Sensing, 2003, 69:1235-1242 doi: 10.14358/PERS.69.11.1235
    [13]
    Glennie C. Calibration and Kinematic Analysis of the Velodyne HDL-64E S2 LiDAR Sensor[J].Photogrammetric Engineering and Remote Sensing, 2012, 78:339-347 doi: 10.14358/PERS.78.4.339
    [14]
    Chan T O, Lichti D D, Glennie C L. Multi-feature Based Boresight Self-Calibration of a Terrestrial Mobile Mapping System[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 82:112-124 doi: 10.1016/j.isprsjprs.2013.04.005
    [15]
    Nagai M, Chen T, Shibasaki R, et al. UAV-Borne 3-D Mapping System by Multisensor Integration[J].IEEE Transactions on Geoscience and Remote Sensing, 2009, 47:701-708 doi: 10.1109/TGRS.2008.2010314
    [16]
    Choi K, Lee I, Hong J, et al. Developing a UAV-Based Rapid Mapping System for Emergency Response[J]. Unmanned Systems Technology XI, 2009:733209 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC029937598
    [17]
    Wu C. Towards Linear-Time Incremental Structure from Motion[OL]. http://ccwu.me/vsfm/vsfm.pdf, 2013
    [18]
    Shin E H, El-Sheimy N. An Unscented Kalman Filter for In-motion Alignment of Low-Cost IMUs[J].Position Location and Navigation Symposium, 2004, doi: 10.1109/PLANS.2004.1309005
    [19]
    Shen S.Accurate Multiple View 3D Reconstruction Using Patch-Based Stereo for Large-Scale Scenes[J].IEEE Transactions on Image Processing, 2013, 22:1901-1914 doi: 10.1109/TIP.2013.2237921
  • Related Articles

    [1]MA Jingzhen, SUN Qun, WEN Bowei, ZHOU Zhao, LU Chuanwei, LÜ Zheng, SUN Shijie. A Hybrid Multi-feature Road Network Selection Method Based on Trajectory Data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(7): 1009-1016. DOI: 10.13203/j.whugis20190480
    [2]YANG Hao, HE Zongyi, CHEN Huayang, ZHOU Zhuanxiang, FAN Yong. A Method for Automatic Generalization of Urban Settlements Considering Road Network[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 965-970. DOI: 10.13203/j.whugis20160094
    [3]CAO Weiwei, ZHANG Hong, HE Jing, LAN Tian. Road Selection Considering Structural and Geometric Properties[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 520-524. DOI: 10.13203/j.whugis20140862
    [4]YANG Lin, WAN Bo, WANG Run, ZUO Zejun, AN Xiaoya. Matching Road Network Based on the Structural Relationship Constraint of Hierarchical Strokes[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1661-1668. DOI: 10.13203/j.whugis20140295
    [5]tianjin g, renchan g, wangyihen g, xiongfu q uan, leiyin g zhe. imp rovementofself-best-fitstrate gyforstrokebuildin g[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9): 1209-1214. DOI: 10.13203/j .whu g is20140455
    [6]LIU Hailong, QIAN Haizhong, WANG Xiao, HE Haiwei. Road Networks Global Matching Method Using Analytical Hierarchy Process[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 644-651. DOI: 10.13203/j.whugis20130350
    [7]TIAN Jing, HE Qingsong, YAN Fen. Formalization and New Algorithm of stroke Generation in Road Networks[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 556-560. DOI: 10.13203/j.whugis20120127
    [8]TIAN Jing, WU Dang, ZHAN Yifei. Degree Correlation of Urban Street Networks[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 332-334. DOI: 10.13203/j.whugis20120675
    [9]CHEN Jun, HU Yungang, ZHAO Renliang, LI Zhilin. Road Data Updating Based on Map Generalization[J]. Geomatics and Information Science of Wuhan University, 2007, 32(11): 1022-1027.
    [10]HUANG Shuqiang, SUN Chengzhi, FU Zhongliang. License Plate Binarization Algorithm Based on the Features of Characters' Strokes[J]. Geomatics and Information Science of Wuhan University, 2003, 28(1): 71-73,79.
  • Cited by

    Periodical cited type(9)

    1. 赵天明,孙群,马京振,张付兵,温伯威. 融合路段和stroke特征的道路自动选取方法. 地球信息科学学报. 2024(12): 2673-2685 .
    2. 郭漩,钱海忠,王骁,刘俊楠,任琰,赵钰哲,陈国庆. 多源道路智能选取的本体知识推理方法. 测绘学报. 2022(02): 279-289 .
    3. 马京振,孙群,温伯威,周炤,陆川伟,吕峥,孙士杰. 结合轨迹数据的混合多特征道路网选取方法. 武汉大学学报(信息科学版). 2022(07): 1009-1016 .
    4. 朱余德,杨敏,晏雄锋. 利用图卷积神经网络的道路网选取方法. 北京测绘. 2022(11): 1455-1459 .
    5. 韩远,王中辉,徐智邦,余贝贝. 结合引力场理论的道路自动选取方法. 测绘科学. 2021(01): 189-195 .
    6. 韩远,王中辉,禄小敏. POI辅助下的道路选取. 测绘科学. 2021(04): 165-171 .
    7. 陈晓东,余劲松弟. 顾及语义关联信息的道路选取方法. 海南大学学报(自然科学版). 2021(03): 227-234 .
    8. 王晓妍. 土地利用图中线状要素综合的质量评价. 测绘通报. 2020(04): 116-120 .
    9. 冯云,朱素华,孙益清,王金鑫. 郑州轨道交通5号线开通对城市交通格局的影响. 城市勘测. 2020(04): 54-58 .

    Other cited types(11)

Catalog

    Article views (1598) PDF downloads (333) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return