LI Wanqiu, WANG Wei, ZHANG Chuanyin, WEN Hanjiang, ZHONG Yulong. Water Storage Variation Inversion in the Tibetan Plateau by Using Forward-Modeling Method[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 141-149. DOI: 10.13203/j.whugis20180263
Citation: LI Wanqiu, WANG Wei, ZHANG Chuanyin, WEN Hanjiang, ZHONG Yulong. Water Storage Variation Inversion in the Tibetan Plateau by Using Forward-Modeling Method[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 141-149. DOI: 10.13203/j.whugis20180263

Water Storage Variation Inversion in the Tibetan Plateau by Using Forward-Modeling Method

Funds: 

The National Natural Science Foundation of China 41374081

The National Natural Science Foundation of China 41674024

the National Key Research and Development Program of China 2016YFB0501702

Fundamental Research Funds for Chinese Academy of Surveying and Mapping 7771806

Fundamental Research Funds for Welfare Scientific Research Institutes of Central Level AR1905

More Information
  • Author Bio:

    LI Wanqiu, PhD candidate, specializes in the time-variable gravity field applications based on GRACE. E-mail: 1404855692@qq.com

  • Corresponding author:

    WANG Wei, PhD, associate researcher. E-mail: wangwei@casm.ac.cn

  • Received Date: December 07, 2018
  • Published Date: January 04, 2020
  • The water resources in the Tibetan Plateau have a profound impact on China's economic, social development and climate change. Based on gravity data from gravity recovery and climate experiment (GRACE) satellite, considering its filtering leakage error, this paper proposes the Forward-Modeling method for quantitative estimation. In view of the glocial isostatic adjustment(GIA) effect, we first infer terrestrial water storage (TWS) changes in the Tibetan Plateau, and compare the results with the water-global assessment and prognosis hydrology model(WGHM). Then we extract the time-frequency spectrum of time-series signals using short-time Fourier transformation algorithm. In addition, we discuss the relationship between TWS and precipitation by combining with precipitation data from Global Presipitation Climatology Centre. The study finds that:(1) TWS shows obvious spatial differences after recovering leakage signal. In most of the period, TWS in the north and southeast is in large surplus, and TWS in the south and southwest is rapidly depleted. The spatial characteristics are basically consistent with the WGHM results. (2) The time-frequency spectrum distribution of TWS is dominated by low-frequency signals, and time-series dynamic changes have obvious seasonal and periodic changes, with an annual amplitude of 7.5 cm. The increase rate of water storage in 2003-2004 was 3.89 cm/a. The loss rate in 2005-2010 was -0.31 cm/a. The rate of increase in 2011-2014 was 0.22 cm/a. (3) Precipitation is the main factor affecting the variation of TWS. In 2006 and 2009, precipitation was significantly lower, the water storage all decreased significantly. In 2010, there was heavy rainfall, the water storage increased significantly. The leakage error correction method and research results in this paper have important reference value for quantitative research on regional TWS varition.
  • [1]
    钟敏, 段建宾, 许厚泽, 等.利用卫星重力观测研究近5年中国陆地水量中长空间尺度的变化趋势[J].科学通报, 2009, 54(9): 1 290‐1 294 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200909022

    Zhong Min, Duan Jianbin, Xu Houze, et al. Trend of China Land Water Storage Redistribution at Medi- and Large-Spatial Scales in Recent Years by Satellite Gravity Observations[J]. Chinese Science Bulletin, 2009, 54(9): 1 290‐1 294 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200909022
    [2]
    王星星, 李斐, 郝卫峰, 等. GRACE RL05反演南极冰盖质量变化方法比较[J].武汉大学学报·信息科学版, 2016, 41(11): 1 450-1 457 http://ch.whu.edu.cn/CN/abstract/abstract5589.shtml

    Wang Xingxing, Li Fei, Hao Weifeng, et al. Comparison of Several Filters in the Rates of Antarctic Ice Sheet Mass Change Based on GRACE RL05 Data[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1 450-1 457 http://ch.whu.edu.cn/CN/abstract/abstract5589.shtml
    [3]
    Zhang G, Yao T, Xie H, et al. Increased Mass over the Tibetan Plateau: From Lakes or Glaciers[J]. Geophysical Research Letters, 2013, 40(10): 2 125-2 130 doi: 10.1002/grl.50462
    [4]
    文汉江, 黄振威, 王友雷, 等.青藏高原及其周边地区水储量变化的独立成分分析[J].测绘学报, 2016, 45(1): 9-15 http://d.old.wanfangdata.com.cn/Periodical/chxb201601002

    Wen Hanjiang, Huang Zhenwei, Wang Youlei, et al. Independent Component Analysis of Water Storage Changes Interpretation over Tibetan Plateau and Its Surrounding Areas[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(1): 9-15 http://d.old.wanfangdata.com.cn/Periodical/chxb201601002
    [5]
    Guo J, Mu D, Liu X, et al. Water Storage Changes over the Tibetan Plateau Revealed by GRACE Mission[J]. Acta Geophysica, 2016, 64(2): 463-476 doi: 10.1515/acgeo-2016-0003
    [6]
    李圳, 章传银, 柯宝贵. GRACE时变重力场滤波方法[J].测绘科学, 2017, 42(12): 14-19 http://d.old.wanfangdata.com.cn/Periodical/chkx201712003

    Li Zhen, Zhang Chuanyin, Ke Baogui. Filtering Method of GRACE Time-Variable Gravity Field[J]. Science of Surveying and Mapping, 2017, 42(12): 14-19 http://d.old.wanfangdata.com.cn/Periodical/chkx201712003
    [7]
    Landerer F W, Swenson S C. Accuracy of Scaled GRACE Terrestrial Water Storage Estimates[J]. Water Resources Research, 2012, 48(4): 4 531-4 536 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2011WR011453
    [8]
    Klees R, Zapreeva E A, Winsemius H C, et al. The Bias in GRACE Estimates of Continental Water Storage Variations[J]. Hydrology and Earth System Sciences, 2006, 11(4): 1 227-1 241 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_245a109746812272a5d46957af52b183
    [9]
    冯伟, Jean-Michel Lemoine, 钟敏, 等.利用重力卫星GRACE监测亚马逊流域2002—2010年的陆地水变化[J].地球物理学报, 2012, 55(3): 814-821 doi: 10.6038/j.issn.0001-5733.2012.03.011

    Feng Wei, Jean-Michel Lemoine, Zhong Min, et al. Terrestrial Water Storage Changes in the Amazon Basin Measured by GRACE During 2002—2010[J]. Chinese Journal of Geophysics, 2012, 55(3):814-821 doi: 10.6038/j.issn.0001-5733.2012.03.011
    [10]
    Chen J L, Wilson C R, Li J, et al. Reducing Leakage Error in GRACE-Observed Long-Term Ice Mass Change: A Case Study in West Antarctica[J]. Journal of Geodesy, 2015, 89(9): 925-940 doi: 10.1007/s00190-015-0824-2
    [11]
    汪汉胜, 相龙伟, Wu Patrick, 等.不同模型的地表质量异常一阶项、二阶项估计[J].武汉大学学报·信息科学版, 2018, 43(12): 2 147-2 242 http://ch.whu.edu.cn/CN/abstract/abstract6302.shtml

    Wang Hansheng, Xiang Longwei, Wu Patrick, et al. Degree One and Degree Two Contributions to Global Surface Mass Anomaly Derived from Different Models[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2 147-2 242 http://ch.whu.edu.cn/CN/abstract/abstract6302.shtml
    [12]
    Döll P, Müller S H, Schuh C, et al. Global-Scale Assessment of Groundwater Depletion and Related Groundwater Abstractions: Combining Hydrological Modeling with Information from Well Observations and GRACE Satellites[J]. Water Resources Research, 2014, 50(7): 5 698-5 720 doi: 10.1002/2014WR015595
    [13]
    Fuchs T, Schneider U, Rudolf B.Precipitation Products of the Global Precipitation Climatology Centre[C]. Japan Geoscience Union Meeting2010, Makuhari, Chiba, Japan, 2010
    [14]
    Paulson A, Zhong S, Wahr J. Inference of Mantle Viscosity from GRACE and Relative Sea Level Data[J]. Geophysical Journal of the Royal Astronomical Society, 2007, 171(2): 497-508 doi: 10.1111/j.1365-246X.2007.03556.x
    [15]
    蒋涛, 王正涛, 金涛勇, 等. GRACE时变重力场位系数相关误差的滤波消除技术[J].武汉大学学报·信息科学版, 2009, 34(12): 1 407-1 409 http://ch.whu.edu.cn/CN/abstract/abstract1450.shtml

    Jiang Tao, Wang Zhengtao, Jin Taoyong, et al. Filter Technique of Removing Correlated Errors Existing in GRACE Time Variable Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1 407-1 409 http://ch.whu.edu.cn/CN/abstract/abstract1450.shtml
    [16]
    吴云龙, 李辉, 邹正波, 等.基于Forward-Modeling方法的黑河流域水储量变化特征研究[J].地球物理学报, 2015, 58(10): 3 507-3 516 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201510007

    Wu Yunlong, Li Hui, Zou Zhengbo, et al. Investigation of Water Storage Variation in the Heihe River Using the Forward-Modeling Method[J]. Chinese Journal of Geophysics, 2015, 58(10): 3 507-3 516 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201510007
    [17]
    Ray R D, Rowlands D D, Egbert G D.Tidal Models in a New Era of Satellite Gravimetry[J]. Space Science Reviews, 2003, 108(1): 271-282 doi: 10.1023/A:1026223308107
    [18]
    陈超, 邹蓉, 刘任莉.联合GPS和GRACE研究青藏高原南部地区垂直形变的季节性波动[J].武汉大学学报·信息科学版, 2018, 43(5): 669-675 http://ch.whu.edu.cn/CN/abstract/abstract6038.shtml

    Chen Chao, Zou Rong, Liu Renli. Vertical Deformation of Seasonal Hydrological Loading in Southern Tibet Detected by Joint Analysis of GPS and GRACE[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 669-675 http://ch.whu.edu.cn/CN/abstract/abstract6038.shtml
    [19]
    Yi S, Sun W. Evaluation of Glacier Changes in High Mountain Asia Based on 10 Year GRACE RL05 Models[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(3):2 504-2 571 doi: 10.1002/2013JB010860
  • Cited by

    Periodical cited type(15)

    1. 肖泽辉,季青,庞小平,闫忠男. 利用海洋2B卫星数据反演南极海冰表面积雪厚度. 测绘地理信息. 2024(06): 64-68 .
    2. 张颖,刘建强,石立坚,蒋城飞. 极地海冰观测卫星的发展现状与展望. 遥感技术与应用. 2024(06): 1339-1352 .
    3. 陈国栋,陈钰,金涛勇,张志杰,李黎. 利用Cryosat-2 SAR模式数据确定北冰洋海平面模型. 大地测量与地球动力学. 2023(06): 606-611+621 .
    4. 于亚冉,王丽华,张梦悦. 基于CryoSat-2的北极海冰类型分类. 测绘与空间地理信息. 2022(01): 147-150 .
    5. 陈国栋,梁圣豪,孟子淇,朱家亨. 利用Cryosat-2数据确定格陵兰冰盖高程和体积变化. 苏州科技大学学报(自然科学版). 2022(01): 66-70+76 .
    6. 屈猛,赵羲,庞小平,雷瑞波. 北极冰间水道区域的物理过程和遥感观测研究进展. 地球科学进展. 2022(04): 382-391 .
    7. 高翔,庞小平,季青. 利用CryoSat-2测高数据研究南极威德尔海海冰出水高度时空变化. 武汉大学学报(信息科学版). 2021(01): 125-132 .
    8. 张婷,张杰,张晰. 基于CryoSat-2数据的2014—2018年北极海冰厚度分析. 海洋科学进展. 2020(03): 425-434 .
    9. 王志勇,王丽华,张晰,孙伟富,刘健. 雷达高度计在海冰厚度探测中的研究进展. 遥感信息. 2020(05): 1-8 .
    10. 满富康,夏文韬,张杰,柯长青. 基于OSI-SAF微波遥感数据的北极一年冰和多年冰研究. 极地研究. 2019(01): 69-83 .
    11. 吴星泉,张胜军,车德福. 利用CryoSat-2卫星测高资料确定北极海冰干舷高. 测绘通报. 2019(07): 64-68 .
    12. 庞小平,刘清全,季青. 北极一年海冰表面积雪深度遥感反演与时序分析. 武汉大学学报(信息科学版). 2018(07): 971-977 .
    13. 蒋广敏,戴利,代欣. 基于改进遗传算法的镀层氧化膜厚度测量研究. 周口师范学院学报. 2018(05): 121-124 .
    14. 王蔓蔓,柯长青,邵珠德. 基于CryoSat-2卫星测高数据的北极海冰体积估算方法. 海洋学报. 2017(03): 135-144 .
    15. 袁乐先,李斐,张胜凯,朱婷婷,左耀文. 利用ICESat/GLAS数据研究北极海冰干舷高度. 武汉大学学报(信息科学版). 2016(09): 1176-1182 .

    Other cited types(20)

Catalog

    Article views (1329) PDF downloads (155) Cited by(35)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return