LIU Jingbin, HUANG Baichuan, ZHANG Bin, LI Leilei, YANG Fan, ZHANG Zhenbing, LI Zheng, TONG Pengfei. AOA Estimation Based on Channel State Information Extracted from WiFi with Double Antenna[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2167-2172. DOI: 10.13203/j.whugis20180178
Citation: LIU Jingbin, HUANG Baichuan, ZHANG Bin, LI Leilei, YANG Fan, ZHANG Zhenbing, LI Zheng, TONG Pengfei. AOA Estimation Based on Channel State Information Extracted from WiFi with Double Antenna[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2167-2172. DOI: 10.13203/j.whugis20180178

AOA Estimation Based on Channel State Information Extracted from WiFi with Double Antenna

Funds: 

The National Key Research and Development Program of China 2016YFB0502204

the National Natural Science Foundation of China 41874031

the Technology Innovation Program of Hubei Province 2018AAA070

the Natural Science Foundation of Hubei Province 2018CFA007

More Information
  • Author Bio:

    LIU Jingbin, PhD, professor, specializes in indoor and outdoor positioning, smartphone navigation, indoor mobile mapping, and GNSS/INS/SLAM integration technology. E-mail:jingbin.liu@whu.edu.cn

  • Received Date: August 29, 2018
  • Published Date: December 04, 2018
  • The off-the-shelf WiFi network interface card(NIC) can provide channel state information(CSI) which has more detailed information than received signal strength indication(RSSI). Using three antennas to obtain channel state information of WiFi to estimate yaw angle of arrive(AOA) has become reality. Based on orthogonal frequency division multiplexing (OFDM) technology, this paper uses two antennas instead of three antennas to create a virtual antenna array with 60 antennas instead of 90 antennas and extends the forward smoothing algorithm to the two-dimensional forward smoothing algorithm, then uses experimental data of non-coherent signal and coherent signal in view of multiple signal classification(MUSIC) to verify the algorithm proposed, which can realize yaw angle of arrive estimation just with two antennas instead of three antennas. The virtual antenna array model and two-dimensional forward smoothing algorithm with two antennas proposed in this paper have validity and applicability.
  • [1]
    Pei L, Chen R, Liu J, et al. Using Inquiry-Based Bluetooth RSSI Probability Distributions for Indoor Positioning[J]. Journal of Global Positioning Systems, 2010, 9(2):122-130 http://ieeexplore.ieee.org/document/5502761/
    [2]
    Yang Z, Zhou Z, Liu Y. From RSSI to CSI:Indoor Localization Via Channel Response[J].ACM Computing Surveys, 2013, 46(2):1-32 http://dl.acm.org/citation.cfm?id=2543592
    [3]
    Zhou M, Zhang Q, Xu K, et al. PRIMAL:Page Rank-Based Indoor Mapping and Localization Using Gene-Sequenced Unlabeled WLAN Received Signal Strength[J]. Sensors, 2015, 15(10):24791-24817 doi: 10.3390/s151024791
    [4]
    陈锐志, 陈亮.基于智能手机的室内定位技术的发展现状和挑战[J].测绘学报, 2017, 46(10):1316-1326 doi: 10.11947/j.AGCS.2017.20170383

    Chen Ruizhi, Chen Liang. Indoor Positioning with Smartphones:The State-of-Art and the Challenges[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1316-1326 doi: 10.11947/j.AGCS.2017.20170383
    [5]
    李桢, 黄劲松.基于RSSI抗差滤波的WiFi定位[J].武汉大学学报·信息科学版, 2016, 41(3):361-366 http://ch.whu.edu.cn/CN/abstract/abstract4576.shtml

    Li Zhen, Huang Jingsong. WiFi Positioning Using Robust Filtering with RSSI[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3):361-366 http://ch.whu.edu.cn/CN/abstract/abstract4576.shtml
    [6]
    胡安冬, 王坚, 汪云甲, 等.利用渐消自适应EKF算法进行PDR-WiFi融合定位[J].武汉大学学报·信息科学版, 2016, 41(11):1556-1562 http://ch.whu.edu.cn/CN/abstract/abstract5605.shtml

    Hu Andong, Wang Jian, Wang Yunjia, et al. A Fusion Positioning for PDR and WiFi Based on Fading Adaptive Weighted EKF[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11):1556-1562 http://ch.whu.edu.cn/CN/abstract/abstract5605.shtml
    [7]
    Kotaru M, Joshi K, Bharadia D, et al. SpotFi:Decimeter Level Localization Using WiFi[J]. ACM Sigcomm Computer Communication Review, 2015, 45(4):269-282 http://dl.acm.org/citation.cfm?id=2787487
    [8]
    Tian Z, Li Z, Zhou M, et al. PILA:Sub-meter Localization Using CSI from Commodity WiFi Devices[J]. Sensors, 2016, 16(10):1664-1684 doi: 10.3390/s16101664
    [9]
    Qian K, Wu C, Yang Z, et al. Enabling Contactless Detection of Moving Humans with Dynamic Speeds Using CSI[J]. ACM Transactions on Embedded Computing Systems, 2018, 17(2):1-18 http://dl.acm.org/citation.cfm?id=3157677
    [10]
    王钰翔, 李晟洁, 王皓, 等.基于WiFi的非接触式行为识别研究综述[J].浙江大学学报(工学版), 2017, 51(4):648-654 http://www.cqvip.com/QK/90076A/201704/671887974.html

    Wang Yuxiang, Li Shengjie, Wang Hao, et al. Survey on WiFi Based Contactless Activity Recognition[J].Journal of Zhejiang University(Engineering Science), 2017, 51(4):648-654 http://www.cqvip.com/QK/90076A/201704/671887974.html
    [11]
    Wang H, Zhang D, Ma J, et al. Human Respiration Detection with Commodity WiFi Devices: Do User Location and Body Orientation Matter?[C]. ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 2016
    [12]
    Xie Y, Li Z, Li M. Precise Power Delay Profiling with Commodity WiFi[C]. ACM Mobi Com, Paris, France, 2015
    [13]
    Sen S, Radunovi B, Choudhury R R, et al. Spot Localization Using PHY Layer Information[C]. ACM Conference on Mobile Computing and Networkig, Paris, France, 2015
    [14]
    Zhuo Y, Zhu H, Xue H, et al. Perceiving Accurate CSI Phases with Commodity WiFi Devices[C]. IEEE Conference on Computer Communications, Atlanta, GA, USA, 2017
    [15]
    Xiong J, Jamieson K. ArrayTrack: A Fine-Grained Indoor Location System[C]. Usenix Conference on Networked Systems Design and Implementation, Seattle, WA, USA, 2013
    [16]
    Gaebel E, Zhang N, Lou W, et al. Looks Good to Me: Authentication for Augmented Reality[C]. ACM International Workshop on Trustworthy Embedded Devices, Vienna, Austria, 2016
    [17]
    郑建生, 陈鲤文, 代永红. GNSS接收机抗干扰自适应调零技术性能估计[J].武汉大学学报·信息科学版, 2015, 40(8):1006-1011 http://ch.whu.edu.cn/CN/abstract/abstract3404.shtml

    Zheng Jiansheng, Chen Liwen, Dai Yonghong. Performance Estimates of GNSS Receiver Jamming with Adaptive[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8):1006-1011 http://ch.whu.edu.cn/CN/abstract/abstract3404.shtml
    [18]
    刘德树.空间谱估计及其应用[M].合肥:中国科学技术大学出版社, 1997

    Liu Deshu. Spatial Spectrum Estimation and Its Application[M]. Hefei:Press of University of Science and Technology of China, 1997
    [19]
    Shan Tiejun, Wax M, Kailath T. On Spatial Smoothing for Direction-of-Arrival Estimation of Coherent Signals[J]. IEEE Trans Acoust Speech Signal Processing, 1985, 33(4):806-811 doi: 10.1109/TASSP.1985.1164649
    [20]
    Schulz M, Knapp F, Deligeorgopoulos E, et al. Demo: Nexmon in Action: Advanced Applications Powered by the Nexmon Firmware Patching Framework[C]. The 11th ACM International Workshop on Wireless Network Testbeds, Experimental Evaluation and Characteri-zation, Snowbird, Utah, USA, 2017
    [21]
    Schulz M, Wegemer D, Hollick M. DEMO: Using NexMon, the C-based WiFi Firmware Modification Framework[C]. ACM Conference on Security and Privacy in Wireless and Mobile Networks, Darmstadt, Germany, 2016
  • Related Articles

    [1]LIU Jiping, CAO Yuanhui, WANG Yong, REN Fu, DU Qingyun. Evaluating the Accessibility of Medical Services in the 15 min Life Circle Using Internet Pan-Map Resources: A Case Study in Shanghai[J]. Geomatics and Information Science of Wuhan University, 2022, 47(12): 2054-2063. DOI: 10.13203/j.whugis20220565
    [2]ZHAO Zhongguo, ZHANG Feng, ZHENG Jianghua. Evaluation of Landslide Susceptibility by Multiple Adaptive Regression Spline Method[J]. Geomatics and Information Science of Wuhan University, 2021, 46(3): 442-450. DOI: 10.13203/j.whugis20190136
    [3]WANG Yafei, YUAN Hui, CHEN Biyu, LI Qingquan, WAN Meng, WANG Jiayao, GUO Jianzhong. Measuring Place-Based Accessibility Under Travel Time Uncertainty[J]. Geomatics and Information Science of Wuhan University, 2019, 44(11): 1723-1729. DOI: 10.13203/j.whugis20180015
    [4]LU Yonghua, LI Shuang. Spatial Accessibility of Indoor Emergency Shelters Based on Improved G2SFCA in Shenzhen City[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1391-1398. DOI: 10.13203/j.whugis20180456
    [5]LIU Haiyan, PANG Xiaoping, WANG Yue, LI Zhongxiang. Quantitative Research for Site-selection of Antarctic Year-round Research Stations Based on Logistic Regression[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 390-394. DOI: 10.13203/j.whugis20150260
    [6]FU Zhongliang, YANG Yuanwei, GAO Xianjun, ZHAO Xingyuan, LU Yuefeng, CHEN Shaoqin. Road Networks Matching Using Multiple Logistic Regression[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 171-177. DOI: 10.13203/j.whugis20150112
    [7]Lu Jun, Dai Wujiao, Zhang Zhetao. Modeling Dam Deformation Using Varying Coefficient Regression[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 139-142.
    [8]NONG Yu, WANG Kun, DU Qingyun. Modeling Land Use Change Using Multinomial Logistic Regression[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6): 743-746.
    [9]FANG Zhixiang, LI Qingquan, SHAW Shihlung. Representation of Location-Specific Space-Time Accessibility Based on Time Geography Framework[J]. Geomatics and Information Science of Wuhan University, 2010, 35(9): 1091-1095.
    [10]Wu Zian. The Independent Variablas-snooping in the Regression Analysis of Dam Deformation[J]. Geomatics and Information Science of Wuhan University, 1993, 18(1): 20-26.
  • Cited by

    Periodical cited type(28)

    1. 董威威,蒋贵国,梁小雅,钟孟君,程珍旎. 基于改进引力模型的成渝地区双城经济圈城市经济联系网络演变研究. 四川师范大学学报(自然科学版). 2025(01): 82-93 .
    2. 詹庆明,李轩,樊智宇. 利用非负矩阵分解识别县域人群活动时空特征. 测绘地理信息. 2024(02): 108-113 .
    3. 李静波,关雪峰,曾星,杨昌兰,邢巍然,吴华意. 长株潭城市群建成区时空扩展特征及驱动力分析. 武汉大学学报(信息科学版). 2024(06): 1028-1039 .
    4. 何明卫,赵庆文,李健波. 组团城市通勤流网络特征及影响因素分析——以贵阳市为例. 昆明理工大学学报(自然科学版). 2024(04): 249-260 .
    5. 胡秋实,李锐,吴华意,刘朝辉,蔡晶. 顾及城市场景变化的人口分析单元表达. 武汉大学学报(信息科学版). 2024(10): 1788-1799 .
    6. 薛山,廖一兰,李春林,胡艺. 不同人口流动模式下城市传染病时空传播模型适用性研究. 地球信息科学学报. 2023(01): 208-222 .
    7. 张伟丽,郝智娟,王伊斌,魏瑞博. 城市群人口流动空间网络及影响因素. 地理科学. 2023(01): 72-81 .
    8. 张伟丽,郝智娟,王伊斌,魏瑞博. 城市群人口流动空间网络及影响因素. 地理科学. 2023(02): 72-81 .
    9. 郭联欢,洪昕晨. 城市社会感知研究与应用进展. 中外建筑. 2023(06): 12-17 .
    10. 严雪心,周婕,盛富斌,牛强. 大城市近郊区产业类型对就业人口流动的差异化影响——以武汉市为例. 经济地理. 2023(10): 63-74 .
    11. 真诗泳,林钦贤,张露丹,李嘉政,林玉英,陈诚,潘自宝,胡喜生. 基于多源数据的城市内部空间交互特征:以福州市主城区为例. 科学技术与工程. 2023(35): 14937-14946 .
    12. 赵凯旭,张帅兵,黄晓军,李恩龙,武风奇. 新冠疫情管控期间西安市人口分布演变及影响因素探测——基于多源时空大数据视角. 人口与发展. 2022(01): 140-150 .
    13. 甄峰,李哲睿,谢智敏. 基于人口流动的城市内部空间结构特征及其影响因素分析——以南京市为例. 地理研究. 2022(06): 1525-1539 .
    14. 龚丽丽,蔡忠亮,李伯钊,牛彦芬,苏世亮. 街道尺度下城市居民出行特征分析. 测绘地理信息. 2022(S1): 69-73 .
    15. 段艳慧,郭伟,赵学胜,张晓莹,张冰瑞. 基于Landsat影像和统计数据的北京市人口密度制图. 北京测绘. 2022(08): 1096-1101 .
    16. 赵虎,尚铭宇,张悦,张浩楠,李鹏乾. 区域中心城市就业空间格局及优化策略研究——以山东省青岛市为例. 山东建筑大学学报. 2022(06): 61-69 .
    17. 孙艳玲,李俊蓉,张夏坤,裴新蕊,刘子菲,郭鹏. 基于昼夜人口变化的应急避难场所可达性评价——以天津市西青区为例. 安全与环境学报. 2022(06): 3342-3349 .
    18. 张爱民. 基于大数据的江西省就业收入和社会保障研究. 科技广场. 2022(05): 71-78 .
    19. 何建华,覃荣诺,丁愫,李江,岳桥兵. 基于乡村宜居性和人口流动网络特征的农村居民点重构. 武汉大学学报(信息科学版). 2021(03): 402-409 .
    20. 罗桑扎西,甄峰,张姗琪. 复杂网络视角下的城市人流空间概念模型与研究框架. 地理研究. 2021(04): 1195-1208 .
    21. 季航宇,蔡忠亮,姜莉莉,李桂娥,李伯钊. 出租车出行的空间不平等及其与人口结构的关联. 武汉大学学报(信息科学版). 2021(05): 766-776 .
    22. 刘正廉,桂志鹏,吴华意,秦昆,吴京航,梅宇翱,赵晶. 融合建筑物与POI数据的精细人口空间化研究. 测绘地理信息. 2021(05): 102-106 .
    23. 付诗航,刘耀林,方莹,杨孝军,刘艳芳,彭明军. 基于SCD的公共交通换乘时空模式——以武汉市为例. 武汉大学学报(信息科学版). 2020(07): 1089-1098 .
    24. 甘田,刘鼎. 基于手机数据的职住空间关系研究——以重庆市主城区为例. 城市交通. 2020(05): 36-44+119 .
    25. 刘艳芳,方飞国,刘耀林,罗名海. 时空大数据在空间优化中的应用. 测绘地理信息. 2019(03): 7-20 .
    26. 杨朗,周丽娜,张晓明. 基于手机信令数据的广州市职住空间特征及其发展模式探究. 城市观察. 2019(03): 87-96 .
    27. 花磊,彭宏杰,杨秀锋,刘秀芸,袁绪英,吴宜进. 基于腾讯位置大数据的长江经济带人口流动空间分析. 华中师范大学学报(自然科学版). 2019(05): 815-820 .
    28. 宋小冬,杨钰颖,钮心毅. 上海典型产业园区职工居住地、通勤距离的变化及影响机制. 城市发展研究. 2019(12): 53-61 .

    Other cited types(17)

Catalog

    Article views PDF downloads Cited by(45)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return