LIU Yaolin, FANG Feiguo, WANG Yiheng. Characteristics and Formation Mechanism of Intra-Urban Employment Flows Based on Mobile Phone Data-Taking Wuhan City as an Example[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2212-2224. DOI: 10.13203/j.whugis20180140
Citation: LIU Yaolin, FANG Feiguo, WANG Yiheng. Characteristics and Formation Mechanism of Intra-Urban Employment Flows Based on Mobile Phone Data-Taking Wuhan City as an Example[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2212-2224. DOI: 10.13203/j.whugis20180140

Characteristics and Formation Mechanism of Intra-Urban Employment Flows Based on Mobile Phone Data-Taking Wuhan City as an Example

Funds: 

The National Natural Science Foundation of China 41771432

the National Key Research and Development Program of China 2017YFB0503601

More Information
  • Author Bio:

    LIU Yaolin, PhD, professor, Academician of International Eurasian Academy of Sciences specializes in geographic data mi-ning and spatial analysis. E-mail: yaolin610@163.com

  • Received Date: August 27, 2018
  • Published Date: December 04, 2018
  • Human mobility is a cross-disciplinary research hotspot which reflects the complex man-land relationship. Understandings of the intra-urban employment population flow, as an important part of urban group mobility, are crucial for urban planning and traffic forecasting. The common use of location-awareness devices such as mobile phones enables to capture human behavioral data for analyzing intra-urban employment flow. In this paper, we attempt to characterize the employment flow and interpret its formation mechanism using mobile phone data recorded during 30 days (from June 1, 2016 to June 30, 2016) in Wuhan. Considering the spatial distribution of cellular base stations, we divide our study area into grids sized 250 m×250 m. We then adopt approaches to extract daily individual mobility information by identifying positon and duration of stagnations. Next, we propose several rules to infer in which grids people work and reside from individual mobility information we extracted and estimate the job/housing distribution as well as the employment flows between sub-districts. We then build the employment flows network, and methods such as network centrality analysis, network density analysis and community detection are applied to discover the pattern and characteristic of employment flows. Finally, we examine the influence of employment potential, traffic accessibility, spatial proximity, cultural difference and major industry on the size of employment flow between sub-districts and interpret its formation mechanism using logistic regression. The results firstly show that the number of intra-urban employment flow in Wuhan is unevenly distributed as large amounts of employment flow are concentrated in a few sub-districts. Secondly, the employment flows mainly occur in the sub-districts with good spatial proximity. It shows the distribution of the outflow employments decrease gradually as distance and accessibility time increase, and forms several employment communities (such as Hanyang, Wuchang North, Wuchang South, et al.) in the influence of geographical barriers and cultural differences. Thirdly, the employment potential measured by the resident population of the origin sub-districts and the working population of the destination sub-districts is the most important factor to increase the size of employment flow. Rather, cultural differences and poor accessibility hinder employment flow. The result also verifies that differences in major industries affect the employment flow, that commerce and education have a negative effect on the outflow of employments, but the industry attracts employments.
  • [1]
    陆锋, 刘康, 陈洁.大数据时代的人类移动性研究[J].地球信息科学学报, 2014, 16(5):665-672 http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201405001

    Lu Feng, Liu Kang, Chen Jie. Research on Human Mobility in Big Data Era[J]. Journal of Geo-Information Science, 2014, 16(5):665-672 http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201405001
    [2]
    González M C, Hidalgo C A. Understanding Individual Human Mobility Patterns[J]. Nature, 2008, 453(7196):779-782 doi: 10.1038/nature06958
    [3]
    Kaltenbrunner A, Meza R, Grivolla J, et al. Urban Cycles and Mobility Patterns:Exploring and Predicting Trends in a Bicycle-Based Public Transport System[J]. Pervasive & Mobile Computing, 2010, 6(4):455-466 http://dl.acm.org/citation.cfm?id=1860501
    [4]
    Long Y, Han H, Tu Y, et al. Evaluating the Effectiveness of Urban Growth Boundaries Using Human Mobility and Activity Records[J]. Cities, 2015, 46:76-84 doi: 10.1016/j.cities.2015.05.001
    [5]
    Xie K, Xiong H, Li C. The Correlation Between Human Mobility and Socio-demographic in Megacity[C]. IEEE Smart Cities Conference, Trento, Italy, 2016 https://ieeexplore.ieee.org/document/7580733
    [6]
    周素红, 杨利军.广州城市居民通勤空间特征研究[J].城市交通, 2005, 3(1):62-67 doi: 10.3969/j.issn.1672-5328.2005.01.015

    Zhou Suhong, Yang Lijun. Study on the Spatial Characteristic of Commuting in Guangzhou[J].Urban Transport of China, 2005, 3(1):62-67 doi: 10.3969/j.issn.1672-5328.2005.01.015
    [7]
    孟斌.北京城市居民职住分离的空间组织特征[J].地理学报, 2009, 64(12):1457-1466 http://d.old.wanfangdata.com.cn/Periodical/dlxb200912006

    Meng Bin. The Spatial Organization of the Separation Between Jobs and Residential Locations in Beijing[J].Acta Geographica Sinica, 2009, 64(12):1457-1466 http://d.old.wanfangdata.com.cn/Periodical/dlxb200912006
    [8]
    刘志林, 张艳, 柴彦威.中国大城市职住分离现象及其特征——以北京市为例[J].城市发展研究, 2009, 16(9):110-117 doi: 10.3969/j.issn.1006-3862.2009.09.020

    Liu Zhilin, Zhang Yan, Chai Yanwei. Home-Work Separation in the Context of Institutional and Spatial Transformation in Urban China:Evidence from Beijing Household Survey Data[J].Urban Development Studies, 2009, 16(9):110-117 doi: 10.3969/j.issn.1006-3862.2009.09.020
    [9]
    刘志林, 王茂军.北京市职住空间错位对居民通勤行为的影响分析——基于就业可达性与通勤时间的讨论[J].地理学报, 2011, 66(4):457-467 http://d.old.wanfangdata.com.cn/Conference/8070703

    Liu Zhilin, Wang Maojun. Job Accessibility and Its Impacts on Commuting Time of Urban Residents in Beijing:From a Spatial Mismatch Perspective[J].Acta Geographica Sinica, 2011, 66(4):457-467 http://d.old.wanfangdata.com.cn/Conference/8070703
    [10]
    周素红, 闫小培.基于居民通勤行为分析的城市空间解读——以广州市典型街区为案例[J].地理学报, 2006, 61(2):179-189 doi: 10.3321/j.issn:0375-5444.2006.02.007

    Zhou Suhong, Yan Xiaopei. The Impact of Commuters' Travel Pattern on Urban Structure:A Case Study in Some Typical Communities in Guangzhou[J].Acta Geographica Sinica, 2006, 61(2):179-189 doi: 10.3321/j.issn:0375-5444.2006.02.007
    [11]
    徐卞融, 吴晓.基于"居住-就业"视角的南京市流动人口职住空间分离[J].城市规划学刊, 2010(5):87-97 doi: 10.3969/j.issn.1000-3363.2010.05.011

    Xu Bianrong, Wu Xiao. Quantitative Analysis of the Separation of Residential and Employment of the Floating Population in Nanjing[J].Urban Planning Forum, 2010(5):87-97 doi: 10.3969/j.issn.1000-3363.2010.05.011
    [12]
    Calabrese F, Lorenzo G D, Liu L, et al. Estimating Origin-Destination Flows Using Mobile Phone Location Data[J].IEEE Pervasive Computing, 2011, 10(4):36-44 doi: 10.1109/MPRV.2011.41
    [13]
    Alexander L, Jiang S, Murga M, et al. Origin-Destination Trips by Purpose and Time of Day Inferred from Mobile Phone Data[J]. Transportation Research Part C Emerging Technologies, 2015, 58:240-250 doi: 10.1016/j.trc.2015.02.018
    [14]
    钮心毅, 丁亮.利用手机数据分析上海市域的职住空间关系——若干结论和讨论[J].上海城市规划, 2015(2):39-43 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shcsgh201502010

    Niu Xinyi, Ding Liang. Analyzing Job-Housing Spatial Relationship in Shanghai Using Mobile Phone Data:Some Conclusions and Discussions[J].Shanghai Urban Planning Review, 2015(2):39-43 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shcsgh201502010
    [15]
    高志刚, 唐小勇, 赵必成, 等.基于手机信令的组团城市通勤特征分析——以重庆主城区为例[J].城乡规划:城市地理学术版, 2016(3):72-77 http://www.cqvip.com/QK/71524X/201603/669451808.html

    Gao Zhigang, Tang Xiaoyong, Zhao Bicheng, et al. Analysis on the Characteristics of Urban Commuter Flow Based on Mobile Phone Signal Data:A Case Study of Chongqing[J]. Urban and Rural Planning, 2016(3):72-77 http://www.cqvip.com/QK/71524X/201603/669451808.html
    [16]
    Phithakkitnukoon S, Horanont T, Lorenzo G D, et al. Activity-Aware Map: Identifying Human Daily Activity Pattern Using Mobile Phone Data[C]. Human Behavior Understanding, 1st International Workshop, HBU 2010, Istanbul, Turkey, 2010 http://www.springerlink.com/content/jj21508881433584
    [17]
    Jiang S, Ferreira J, Gonzalez M C. Activity-Based Human Mobility Patterns Inferred from Mobile Phone Data:A Case Study of Singapore[J].IEEE Transactions on Big Data, 2017, 3(2):208-219 doi: 10.1109/TBDATA.2016.2631141
    [18]
    赵志远, 尹凌, 方志祥, 等.轨迹数据的时间采样间隔对停留识别和出行网络构建的影响[J].武汉大学学报·信息科学版, 2018, 43(8):1152-1158 http://ch.whu.edu.cn/CN/abstract/abstract6167.shtml

    Zhao Zhiyuan, Yin Ling, Fang Zhixiang, et al. Impacts of Temporal Sampling Intervals on Stay Detection and Movement Network Construction in Trajectory Data[J].Geomatics and Information Science of Wuhan University, 2018, 43(8):1152-1158 http://ch.whu.edu.cn/CN/abstract/abstract6167.shtml
    [19]
    Gao S, Liu Y, Wang Y, et al. Discovering Spatial Interaction Communities from Mobile Phone Data[J].Transactions in GIS, 2013, 17(3):463-481 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0230166666/
    [20]
    Louail T, Lenormand M, Cantu Ros O G, et al. From Mobile Phone Data to the Spatial Structure of Cities[J]. Sci Rep, 2014, 4(2973):5276 http://go.nature.com/mObYEV
    [21]
    杨喜平, 方志祥, 赵志远, 等.顾及手机基站分布的核密度估计城市人群时空停留分布[J].武汉大学学报·信息科学版, 2017, 42(1):49-55 http://ch.whu.edu.cn/CN/abstract/abstract5634.shtml

    Yang Xiping, Fang Zhixiang, Zhao Zhiyuan, et al. Analyzing Space-Time Variation of Urban Human Stay Using Kernel Density Estimation by Conside-ring Spatial Distribution of Mobile Phone Towers[J].Geomatics and Information Science of Wuhan University, 2017, 42(1):49-55 http://ch.whu.edu.cn/CN/abstract/abstract5634.shtml
    [22]
    Ravenstein E G. The Laws of Migration[J]. Journal of the Statistic Society of London, 1885, 48(2):167-235 doi: 10.2307/2979181
    [23]
    Mathä T, Wintr L. Commuting Flows Across Bordering Regions:A Note[J]. Applied Economics Letters, 2009, 16(7):735-738 doi: 10.1080/13504850701221857
    [24]
    Fitzgerald J, Leblang D, Teets J C. Defying the Law of Gravity:The Political Economy of International Migration[J].World Politics, 2014, 66(3):406-445 doi: 10.1017/S0043887114000112
    [25]
    Beine M, Bertoli S. A Practitioners' Guide to Gra-vity Models of International Migration[J]. World Economy, 2016, 39(4):496-512 doi: 10.1111/twec.2016.39.issue-4
    [26]
    Ramos R, Suriñach J. A Gravity Model of Migration Between the ENC and the EU[J]. Tijdschrift Voor Economische EnSociale Geografie, 2017, 108(1):21-35 doi: 10.1111/tesg.12195
    [27]
    Hatton T J, Williamson J G. What Fundamentals Drive World Migration?[J].Cepr Discussion Papers, 2002, 159(2):139-158 doi: 10.1057/9780230522534_2
    [28]
    Hatton T J, Williamson J G. Demographic and Economic Pressure on Emigration out of Africa[J].Scandinavian Journal of Economics, 2003, 105(3):465-486 doi: 10.1111/sjoe.2003.105.issue-3
    [29]
    于文丽, 蒲英霞, 陈刚, 等.基于空间自相关的中国省际人口迁移模式与机制分析[J].地理与地理信息科学, 2012, 28(2):44-49 http://d.old.wanfangdata.com.cn/Periodical/dlxygtyj201202011

    Yu Wenli, Pu Yingxia, Chen Gang, et al. Spatial Analysis of the Paterns and Mechanism of Inter-provincial Migration Flows in China[J].Geography and Geo-Information Science, 2012, 28(2):44-49 http://d.old.wanfangdata.com.cn/Periodical/dlxygtyj201202011
    [30]
    巫锡炜, 郭静, 段成荣.地区发展、经济机会、收入回报与省际人口流动[J].南方人口, 2013, 28(6):54-61 doi: 10.3969/j.issn.1004-1613.2013.06.007

    Wu Xiwei, Guo Jing, Duan Chengrong. Regional Development, Economic Opportunities, Income Returns and Inter-provincial Migration[J]. South China Population, 2013, 28(6):54-61 doi: 10.3969/j.issn.1004-1613.2013.06.007
    [31]
    王珏, 陈雯, 袁丰.基于社会网络分析的长三角地区人口迁移及演化[J].地理研究, 2014, 33(2):385-400 http://d.old.wanfangdata.com.cn/Periodical/dlyj201402016

    Wang Jue, Chen Wen, Yuan Feng. Human Mobility and Evolution Based on Social Network:An Empirical Analysis of Yangtze River Delta[J]. Geographical Research, 2014, 33(2):385-400 http://d.old.wanfangdata.com.cn/Periodical/dlyj201402016
    [32]
    陈伟, 刘卫东, 柯文前, 等.基于公路客流的中国城市网络结构与空间组织模式[J].地理学报, 2017, 72(2):224-241 http://d.old.wanfangdata.com.cn/Periodical/dlxb201702004

    Chen Wei, Liu Weidong, Ke Wenqian, et al. The Spatial Structures and Organization Patterns of China's City Networks Based on the Highway Passenger Flows[J]. Acta Geographica Sinica, 2017, 72(2):224-241 http://d.old.wanfangdata.com.cn/Periodical/dlxb201702004
    [33]
    Liu X, Derudder B, Wu K. Measuring Polycentric Urban Development in China:An Intercity Transportation Network Perspective[J].Regional Stu-dies, 2016(8):1302-1315 doi: 10.1080/00343404.2015.1004535
    [34]
    刘军.社会网络分析导论[M].北京:社会科学文献出版社, 2004

    Liu Jun. An Introduction to Social Network Analysis[M].Beijing:Social Sciences Academic Press, 2004
    [35]
    Wang J, Mo H, Wang F, et al. Exploring the Network Structure and Nodal Centrality of China's Air Transport Network:A Complex Network Approach[J]. Journal of Transport Geography, 2011, 19(4):712-721 doi: 10.1016/j.jtrangeo.2010.08.012
    [36]
    Bagler G. Analysis of the Airport Network of India as a Complex Weighted Network[J]. Physica A Statistical Mechanics and Its Applications, 2004, 387(12):2972-2980 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_cond-mat%2f0409773
    [37]
    Ran B. Daily O-D Matrix Estimation Using Cellular Probe Data[C]. Transportation Research Board 89th Annual Meeting, Washington D C, USA, 2010
    [38]
    Newman M E, Girvan M. Finding and Evaluating Community Structure in Networks[J]. Physical Review E, Statistical Nonlinear and Soft Matter Physics, 2004, 69(2):026113 doi: 10.1103/PhysRevE.69.026113
    [39]
    Blondel V D, Guillaume J L, Lambiotte R, et al. Fast Unfolding of Communities in Large Networks[J]. Journal of Statistical Mechanics Theory & Experiment, 2008(10):155-168 doi: 10.1088-1742-5468-2008-10-P10008/
    [40]
    Hassan Z, Keymanesh M, Khabiri M. Locating Stations of Public Transportation Vehicles for Improving Transit Accessibility[J]. Transport, 2007, 22(2):99-104 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_70ceb7a60892abd66f75b7e3452d2783
    [41]
    Ford A C, Barr S L, Dawson R J, et al. Transport Accessibility Analysis Using GIS:Assessing Sustainable Transport in London[J]. ISPRS International Journal of Geo-Information, 2015, 4(1):124-149 doi: 10.3390/ijgi4010124
    [42]
    Karou S, Hull A. Accessibility Modelling:Predicting the Impact of Planned Transport Infrastructure on Accessibility Patterns in Edinburgh, UK[J]. Journal of Transport Geography, 2014, 35:1-11 doi: 10.1016/j.jtrangeo.2014.01.002
    [43]
    Niedzielski M A, Boschmann E E. Travel Time and Distance as Relative Accessibility in the Journey to Work[J].Annals of the Association of American Geographers, 2014, 104(6):1156-1182 doi: 10.1080/00045608.2014.958398
    [44]
    钟水映.人口流动与社会经济发展[M].武汉:武汉大学出版社, 2000

    Zhong Shuiying. Population Flow and Socioecono-mic Development[M]. Wuhan:Wuhan University Press, 2000
    [45]
    俞路, 张善余.基于空间统计的人口迁移流分析——以我国三大都市圈为例[J].华东师范大学学报(哲学社会科学版), 2005, 37(5):25-31 doi: 10.3969/j.issn.1000-5579.2005.05.005

    Yu Lu, Zhang Shanyu. An Analysis of the Population Resettlement Flow Based on the Integration of Spatial Statistics-A Case Study of Three Megalopoleis in Contemporary China[J].Journal of East China Normal University (Philosophy and Social Sciences), 2005, 37(5):25-31 doi: 10.3969/j.issn.1000-5579.2005.05.005
  • Cited by

    Periodical cited type(28)

    1. 董威威,蒋贵国,梁小雅,钟孟君,程珍旎. 基于改进引力模型的成渝地区双城经济圈城市经济联系网络演变研究. 四川师范大学学报(自然科学版). 2025(01): 82-93 .
    2. 詹庆明,李轩,樊智宇. 利用非负矩阵分解识别县域人群活动时空特征. 测绘地理信息. 2024(02): 108-113 .
    3. 李静波,关雪峰,曾星,杨昌兰,邢巍然,吴华意. 长株潭城市群建成区时空扩展特征及驱动力分析. 武汉大学学报(信息科学版). 2024(06): 1028-1039 .
    4. 何明卫,赵庆文,李健波. 组团城市通勤流网络特征及影响因素分析——以贵阳市为例. 昆明理工大学学报(自然科学版). 2024(04): 249-260 .
    5. 胡秋实,李锐,吴华意,刘朝辉,蔡晶. 顾及城市场景变化的人口分析单元表达. 武汉大学学报(信息科学版). 2024(10): 1788-1799 .
    6. 薛山,廖一兰,李春林,胡艺. 不同人口流动模式下城市传染病时空传播模型适用性研究. 地球信息科学学报. 2023(01): 208-222 .
    7. 张伟丽,郝智娟,王伊斌,魏瑞博. 城市群人口流动空间网络及影响因素. 地理科学. 2023(01): 72-81 .
    8. 张伟丽,郝智娟,王伊斌,魏瑞博. 城市群人口流动空间网络及影响因素. 地理科学. 2023(02): 72-81 .
    9. 郭联欢,洪昕晨. 城市社会感知研究与应用进展. 中外建筑. 2023(06): 12-17 .
    10. 严雪心,周婕,盛富斌,牛强. 大城市近郊区产业类型对就业人口流动的差异化影响——以武汉市为例. 经济地理. 2023(10): 63-74 .
    11. 真诗泳,林钦贤,张露丹,李嘉政,林玉英,陈诚,潘自宝,胡喜生. 基于多源数据的城市内部空间交互特征:以福州市主城区为例. 科学技术与工程. 2023(35): 14937-14946 .
    12. 赵凯旭,张帅兵,黄晓军,李恩龙,武风奇. 新冠疫情管控期间西安市人口分布演变及影响因素探测——基于多源时空大数据视角. 人口与发展. 2022(01): 140-150 .
    13. 甄峰,李哲睿,谢智敏. 基于人口流动的城市内部空间结构特征及其影响因素分析——以南京市为例. 地理研究. 2022(06): 1525-1539 .
    14. 龚丽丽,蔡忠亮,李伯钊,牛彦芬,苏世亮. 街道尺度下城市居民出行特征分析. 测绘地理信息. 2022(S1): 69-73 .
    15. 段艳慧,郭伟,赵学胜,张晓莹,张冰瑞. 基于Landsat影像和统计数据的北京市人口密度制图. 北京测绘. 2022(08): 1096-1101 .
    16. 赵虎,尚铭宇,张悦,张浩楠,李鹏乾. 区域中心城市就业空间格局及优化策略研究——以山东省青岛市为例. 山东建筑大学学报. 2022(06): 61-69 .
    17. 孙艳玲,李俊蓉,张夏坤,裴新蕊,刘子菲,郭鹏. 基于昼夜人口变化的应急避难场所可达性评价——以天津市西青区为例. 安全与环境学报. 2022(06): 3342-3349 .
    18. 张爱民. 基于大数据的江西省就业收入和社会保障研究. 科技广场. 2022(05): 71-78 .
    19. 何建华,覃荣诺,丁愫,李江,岳桥兵. 基于乡村宜居性和人口流动网络特征的农村居民点重构. 武汉大学学报(信息科学版). 2021(03): 402-409 .
    20. 罗桑扎西,甄峰,张姗琪. 复杂网络视角下的城市人流空间概念模型与研究框架. 地理研究. 2021(04): 1195-1208 .
    21. 季航宇,蔡忠亮,姜莉莉,李桂娥,李伯钊. 出租车出行的空间不平等及其与人口结构的关联. 武汉大学学报(信息科学版). 2021(05): 766-776 .
    22. 刘正廉,桂志鹏,吴华意,秦昆,吴京航,梅宇翱,赵晶. 融合建筑物与POI数据的精细人口空间化研究. 测绘地理信息. 2021(05): 102-106 .
    23. 付诗航,刘耀林,方莹,杨孝军,刘艳芳,彭明军. 基于SCD的公共交通换乘时空模式——以武汉市为例. 武汉大学学报(信息科学版). 2020(07): 1089-1098 .
    24. 甘田,刘鼎. 基于手机数据的职住空间关系研究——以重庆市主城区为例. 城市交通. 2020(05): 36-44+119 .
    25. 刘艳芳,方飞国,刘耀林,罗名海. 时空大数据在空间优化中的应用. 测绘地理信息. 2019(03): 7-20 .
    26. 杨朗,周丽娜,张晓明. 基于手机信令数据的广州市职住空间特征及其发展模式探究. 城市观察. 2019(03): 87-96 .
    27. 花磊,彭宏杰,杨秀锋,刘秀芸,袁绪英,吴宜进. 基于腾讯位置大数据的长江经济带人口流动空间分析. 华中师范大学学报(自然科学版). 2019(05): 815-820 .
    28. 宋小冬,杨钰颖,钮心毅. 上海典型产业园区职工居住地、通勤距离的变化及影响机制. 城市发展研究. 2019(12): 53-61 .

    Other cited types(17)

Catalog

    Article views (2500) PDF downloads (400) Cited by(45)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return