CHENG Mianmian, SUN Qun, LI Shaomei, XU Li. A Point Group Selecting Method Using Multi-level Clustering Considering Density Comparison[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1131-1137. DOI: 10.13203/j.whugis20180043
Citation: CHENG Mianmian, SUN Qun, LI Shaomei, XU Li. A Point Group Selecting Method Using Multi-level Clustering Considering Density Comparison[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1131-1137. DOI: 10.13203/j.whugis20180043

A Point Group Selecting Method Using Multi-level Clustering Considering Density Comparison

Funds: 

The National Natural Science Foundation of China 41571399

More Information
  • Author Bio:

    CHENG Mianmian, PhD candidate, majors in multi-source spatial data fusion and cartographic generalization. E-mail:chmmian@163.com

  • Corresponding author:

    SUN Qun, PhD, professor. E-mail: sunqun@371.net

  • Received Date: May 03, 2018
  • Published Date: August 04, 2019
  • In the absence of semantic information, the selection of point group is one of the difficulties in cartographic generalization. This paper proposes a new multi-level clustering point group generalization method which takes into account density contrast. Firstly, in view of the shortcoming of k-means clustering algorithm, this paper uses an improved density peak clustering method to realize automatic clustering of point group, mainly reflects on determining the optimal cut-off distance by the Gini coefficient and uses the relation of local density and relative distance to detect the clustering centers. Secondly, we propose a point group selection strategy which takes into account density contrast, the point group is divided into clusters of different grade by multi-level clustering. The clustering centers of different grades are determined, and the hierarchical tree structure of point group data is established. The number of points to be selected is calculated according to the square root law, then allocated from top to bottom according to the number of clusters at each level, and the selected objects are determined, and automatic selection of points and multi-scale expression of point group are realized. Point groups experimental results with different distribution patterns show that the method described in this paper can get reasonable selection results, which verifies the universality and effectiveness of the method.
  • [1]
    闫浩文, 王家耀.基于Voronoi图的点群目标普适综合算法[J].中国图象图形学报, 2005, 10(5):633-636 doi: 10.3969/j.issn.1006-8961.2005.05.017

    Yan Haowen, Wang Jiayao. A Generic Algorithm for Point Cluster Generalization Based on Voronoi Diagrams[J]. Journal of Image and Graphics, 2005, 10(5):633-636 doi: 10.3969/j.issn.1006-8961.2005.05.017
    [2]
    郭庆胜, 郑春燕, 胡华科.基于邻近图的点群层次聚类方法的研究[J].测绘学报, 2008, 37(2):256-261 doi: 10.3321/j.issn:1001-1595.2008.02.022

    Guo Qingsheng, Zheng Chunyan, Hu Huake. Hierarchical Clustering Method of Group of Points Based on the Neighborhood Graph[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(2):256-261 doi: 10.3321/j.issn:1001-1595.2008.02.022
    [3]
    闫浩文, 王邦松.地图点群综合的加权Voronoi算法[J].武汉大学学报·信息科学版, 2013, 38(9):1088-1091 http://ch.whu.edu.cn/CN/abstract/abstract2740.shtml

    Yan Haowen, Wang Bangsong. A MWVD-Based Algorithm for Point Cluster Generalization[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9):1088-1091 http://ch.whu.edu.cn/CN/abstract/abstract2740.shtml
    [4]
    李佳田, 康顺, 罗富丽.利用层次Voronoi图进行点群综合[J].测绘学报, 2014, 43(12):1300-1306 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201412015.htm

    Li Jiatian, Kang Shun, Luo Fuli. Point Group Generalization Method Based on Hierarchical Voronoi Diagram[J]. Acta Geodaetica et Cartographic Sinica, 2014, 43(12):1300-1306 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201412015.htm
    [5]
    李雯静, 李少宁, 龙毅, 等.利用重力模型进行GIS点群选取[J].武汉大学学报·信息科学版, 2013, 38(8):945-949 http://ch.whu.edu.cn/CN/abstract/abstract2716.shtml

    Li Wenjing, Li Shaoning, Long Yi, et al. Point Cluster Selection in GIS Using Gravity Model[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8):945-949 http://ch.whu.edu.cn/CN/abstract/abstract2716.shtml
    [6]
    Yan H, Weibel R, Yang B. A Multi-parameter Approach to Automated Building Grouping and Generalization[J]. GeoInformatica, 2008, 12(1):73-89 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0032dde9b8fc3590b84ac9eb37d0d6ea
    [7]
    Steinhauer J H, Wiese T, Freksa C, et al. Recognition of Abstract Regions in Cartographic Maps[J]. Lecture Notes in Computer Science, 2001, 2205:306-321 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC026760285
    [8]
    Jain A K. Data Clustering: 50 Years Beyond k-means[C]. European Conference on Machine Learning and Knowledge Discovery in Databases, Antwerp, Belgium, 2008
    [9]
    Sander J. Density-Based Clustering[M]. US:Springer, 2011
    [10]
    Achtert E, Goldhofer S, Kriegel H P, et al. Evaluation of Clusterings-Metrics and Visual Support[C]IEEE 28th International Conference on Data Engineering(ICDE), Washington D C, USA, 2012
    [11]
    Xu R, Wunsch D. Survey of Clustering Algorithms[J]. IEEE Transactions on Neural Networks, 2005, 16(3):645-678 doi: 10.1109/TNN.2005.845141
    [12]
    Guha S, Rastogi R, Shim K. CURE:An Efficient Clustering Algorithm for Large Databases[J]. ACM SIGMOD Record, 1998, 27(1):73-84 http://d.old.wanfangdata.com.cn/Periodical/ytysyzbxzz201602008
    [13]
    Kalita H K, Bhattacharya D K, Kar A. A New Algorithm for Ordering of Points to Identify Clustering Structure Based on Perimeter of Triangle: Optics (bopt)[C]. The 15th International Conference on Advanced Computing and Communications, Guwahati, India, 2007
    [14]
    Sheikholeslami G, Chatterjee S, Zhang A. WaveCluster: A Multi-resolution Clustering Approach for Very Large Spatial Databases[C]. The 24th International Conference on Very Large Data Bases, New York, USA, 1998
    [15]
    Rhouma M B H, Frigui H. Self-Organization of PulseCoupled Oscillators with Application to Clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(2):180-195 doi: 10.1109/34.908968
    [16]
    Rodriguez A, Laio A. Clustering by Fast Search and Find of Density Peaks[J]. Science, 2014, 344(6191):1492-1496 doi: 10.1126/science.1242072
    [17]
    Xie J, Gao H, Xie W, et al. Robust Clustering by Detecting Density Peaks and Assigning Points Based on Fuzzy Weighted k-nearest Neighbors[J]. Information Sciences, 2016, 354:19-40 doi: 10.1016/j.ins.2016.03.011
    [18]
    Li D, Wang S, Gan W, et al. Data Field for Hierarchical Clustering[J]. International Journal of Data Warehousing and Mining, 2011, 7(4):43-63 doi: 10.4018/jdwm.2011100103
    [19]
    Yan H, Weibel R. An Algorithm for Point Cluster Generalization Based on the Voronoi Diagram[J]. Computers and Geosciences, 2008, 34(8):939-954 doi: 10.1016/j.cageo.2007.07.008

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return