Citation: | PENG Zhenghong, SUN Zhihao, CHENG Qing, JIAO Hongzan, CHEN Wei. Urban Land Use Function Recognition Method Using Sequential Mobile Phone Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1399-1407, 1437. DOI: 10.13203/j.whugis20170329 |
[1] |
Tao P, Sobolevsky S, Ratti C, et al. A New Insight into Land Use Classification Based on Aggregated Mobile Phone Data[J]. International Journal of Geographical Information Science, 2014, 28(9):1988-2007 doi: 10.1080/13658816.2014.913794
|
[2] |
Foody G M. Fully Fuzzy Supervised Classification of Land Cover from Remotely Sensed Imagery with an Artificial Neural Network[J]. Neural Computing & Applications, 1997, 5(4):238-247 doi: 10.1007/BF01424229
|
[3] |
Zhong Y, Zhu Q, Zhang L. Scene Classification Based on the Multifeature Fusion Probabilistic Topic Model for High Spatial Resolution Remote Sensing Imagery[J]. IEEE Transactions on Geoscience & Remote Sensing, 2015, 53(11):6207-6222 http://ieeexplore.ieee.org/document/7119589/
|
[4] |
Zhong Y, Zhao B, Zhang L. Multiagent Object-Based Classifier for High Spatial Resolution Imagery[J]. IEEE Transactions on Geoscience & Remote Sensing, 2013, 52(2):841-857 http://ieeexplore.ieee.org/document/6494281/
|
[5] |
Liu Y, Liu X, Gao S, et al. Social Sensing:A New Approach to Understanding Our Socioeconomic Environments[J].Annals of the Association of Ame-rican Geographers, 2015, 105(3):512-530 doi: 10.1080/00045608.2015.1018773
|
[6] |
龙瀛, 张宇, 崔承印.利用公交刷卡数据分析北京职住关系和通勤出行[J].地理学报, 2012, 67(10):1339-1352 doi: 10.11821/xb201210005
Long Ying, Zhang Yu, Cui Chengyin. Identifying Commuting Pattern of Beijing Using Bus Smart Card Data[J]. Acta Geographica Sinica, 2012, 67(10):1339-1352 doi: 10.11821/xb201210005
|
[7] |
Liu Y, Wang F, Xiao Y, et al. Urban Land Uses and Traffic Source-Sink Areas:Evidence from GPS-Enabled Taxi Data in Shanghai[J]. Landscape & Urban Planning, 2012, 106(1):73-87 http://www.sciencedirect.com/science/article/pii/S0169204612000631
|
[8] |
Yao Y, Li X, Liu X, et al. Sensing Spatial Distribution of Urban Land Use by Integrating Points-of-Interest and Google Word2Vec Model[J]. International Journal of Geographical Information Systems, 2016, 31(4):825-848 doi: 10.1080/13658816.2016.1244608
|
[9] |
Steenbruggen J, Tranos E, Nijkamp P. Data from Mobile Phone Operators:A Tool for Smarter Cities?[J]. Telecommunications Policy, 2015, 39(3):335-346 http://www.sciencedirect.com/science/article/pii/S0308596114000603
|
[10] |
徐仲之, 曲迎春, 孙黎, 等.基于手机数据的城市人口分布感知[J].电子科技大学学报, 2017, 46(1):126-132 doi: 10.3969/j.issn.1001-0548.2017.01.018
Xu Zhongzhi, Qu Yingchun, Sun Li, et al. Urban Population Sensing via Mobile Phone Data[J]. Journal of University of Electronic Science and Technology of China, 2017, 46(1):126-132 doi: 10.3969/j.issn.1001-0548.2017.01.018
|
[11] |
钮心毅, 丁亮, 宋小冬, 等.基于手机数据识别上海中心城的城市空间结构[J].城市规划学刊, 2014(6):61-67 doi: 10.3969/j.issn.1000-3363.2014.06.009
Niu Xinyi, Ding Liang, Song Xiaodong, et al.Understanding Urban Spatial Structure of Shanghai Central City Based on Mobile Phone Data[J]. Urban Planning Forum, 2014(6):61-67 doi: 10.3969/j.issn.1000-3363.2014.06.009
|
[12] |
Tu W, Cao J, Yue Y, et al. Coupling Mobile Phone and Social Media Data:A New Approach to Understanding Urban Functions and Diurnal Patterns[J]. International Journal of Geographical Information Science, 2017, 31(12):2331-2358 doi: 10.1080/13658816.2017.1356464
|
[13] |
Toole J L, Ulm M, Bauer D. Inferring Land Use from Mobile Phone Activity[C]. The ACM SIGKDD International Workshop on Urban Computing, Beijing, China, 2012
|
[14] |
González M C, Hidalgo C A, Barabási A L. Understanding Individual Human Mobility Patterns[J]. Nature, 2008, 453(7196):779-782 doi: 10.1038/nature06958
|
[15] |
Kuusik A, Ahas R, Tiru M. Analysing Repeat Visitation on Country Level with Passive Mobile Positioning Method:An Estonian Case Study[J]. Discussions on Estonian Economic Policy, 2009, 17:140-155 http://www.researchgate.net/publication/307685047_Analysing_Repeat_Visitation_on_Country_Level_with_Passive_Mobile_Positioning_Method_an_Estonian_Case_Study
|
[16] |
Song C, Qu Z, Blumm N, et al. Limits of Predictability in Human Mobility[J]. Science, 2010, 327(5968):1018-1021 doi: 10.1126/science.1177170
|
[17] |
Traag V A, Browet A, Calabrese F, et al. Social Event Detection in Massive Mobile Phone Data Using Probabilistic Location Inference[C]. The Third International Conference on Privacy, Security, Risk and Trust, Boston, USA, 2011
|
[18] |
Luxburg U. A Tutorial on Spectral Clustering[J]. Statistics & Computing, 2007, 17(4):395-416 doi: 10.1007-s11222-007-9033-z/
|
[19] |
Shi J, Malik J. Normalized Cuts and Image Segmentation[J].IEEE Transactions on Pattern Analysis & Machine Intelligence, 2000, 22(8):888-905 http://d.old.wanfangdata.com.cn/Periodical/jsjyyyj200702054
|
[20] |
Caliński T, Harabasz J. A Dendrite Method for Cluster Analysis[J]. Communications in Statistics, 1974, 3(1):1-27 doi: 10.1080-03610927408827101/
|
[21] |
Calabrese F, Ferrari L, Blondel V D. Urban Sen-sing Using Mobile Phone Network Data:A Survey of Research[J]. ACM Computing Surveys (CSUR), 2015, 47(2):1-25 https://www.sciencedirect.com/science/article/pii/S1566253517303421
|
[22] |
Louail T, Lenormand M, Cantu Ros O G, et al. From Mobile Phone Data to the Spatial Structure of Cities[J]. Scientific Reports, 2014, 4:5276-5290 http://pubmedcentralcanada.ca/pmcc/articles/PMC4055889/
|
[1] | WU Yuhao, CAO Xuefeng. Hilbert Code Index Method for Spatiotemporal Data of Virtual Battlefield Environment[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1403-1411. DOI: 10.13203/j.whugis20190394 |
[2] | ZHU Jie, ZHANG Hongjun. Battlefield Geographic Environment Spatiotemporal Process Model Based on Simulation Event[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1367-1377, 1437. DOI: 10.13203/j.whugis20200175 |
[3] | ZHU Jie, YOU Xiong, XIA Qing, ZHANG Hongjun. Battlefield Geographic Environment Data Organizational Process Modeling Based on OOPN[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 1027-1034. DOI: 10.13203/j.whugis20180313 |
[4] | LI Zhaoxing, ZHAI Jingsheng, WU Fang. A Shape Similarity Assessment Method for Linear Feature Generalization[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1859-1864. DOI: 10.13203/j.whugis20180164 |
[5] | ZHU Jie, YOU Xiong, XIA Qing. Battlefield Environment Object Spatio-Temporal Data Organizing Model Based on Task-Process[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1739-1745. DOI: 10.13203/j.whugis20170074 |
[6] | LI Jian, ZHOU Qu, CHEN Xiaoling, TIAN Liqiao, LI Tingting. Spatial Scale Study on Quantitative Remote Sensing of Highly Dynamic Coastal/Inland Waters[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 937-942. DOI: 10.13203/j.whugis20160174 |
[7] | XU Junkui, WU Fang, LIU Wenfu, JIN Pengfei. Settlement Incremental Updating Quality Evaluation Basedon Neighborhood Spatial Similarity[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 476-480. DOI: 10.13203/j.whugis20120117 |
[8] | AN Xiaoya, SUN Qun, YU Bohu. Feature Matching from Network Data at Different Scales Based on Similarity Measure[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2): 224-228. |
[9] | LIU Pengcheng, LUO Jing, AI Tinghua, LI Chang. Evaluation Model for Similarity Based on Curve Generalization[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 114-117. |
[10] | Wang Qiao. Self-similarity Analysis of Cartographic Lines and the Automated Line Generalization[J]. Geomatics and Information Science of Wuhan University, 1995, 20(2): 123-128. |
1. |
李成名,武鹏达,印洁. 图数统一表达地理模型及自补偿方法. 测绘学报. 2017(10): 1688-1697 .
![]() |