LI Jianwei, QU Changwen, PENG Shujuan. A Joint SAR Ship Detection and Azimuth Estimation Method[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 901-907. DOI: 10.13203/j.whugis20170328
Citation: LI Jianwei, QU Changwen, PENG Shujuan. A Joint SAR Ship Detection and Azimuth Estimation Method[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 901-907. DOI: 10.13203/j.whugis20170328

A Joint SAR Ship Detection and Azimuth Estimation Method

More Information
  • Author Bio:

    LI Jianwei, PhD candidate, specializes in target detection and recognition in SAR images, deep learning and computer vision. E-mail: lgm_jw@163.com

  • Corresponding author:

    QU Changwen, PhD, professoy. E-mail: qcwwby@sohu.com

  • Received Date: March 13, 2018
  • Published Date: June 04, 2019
  • This paper proposes a fast single stage synthetic aperture radar(SAR) ship detection and azimuth estimation method. It can output the location, type and orientation of the object in the image after a forward process, which is completely end to end for training and inference. This method is based on the single shot detector(SSD). The feature pyramid network makes full use of the high-level semantic features and low-level position features, which make the bottom and top layers have class information. This can solve the following two problems:Small targets are easy ignored at the top layer and the bottom layer would predict the wrong class. The loss function reduces the weight of huge number easy classified examples, which can avoid dominating the hard classified examples. This can make the objective function converge better and faster. By adding the new azimuth estimation module, the method can perform the two tasks simultaneously with a small increase in calculation. By the experiments on the opened SAR ship detection dataset, we can find that the proposed method can detect ships and estimate the orientation rapidly and accurately.
  • [1]
    Friedman W C C, Pichel K S, Clemente-Colon W G, et al. Automatic Detection of Ships in RadarSAT-1 SAR Imagery[J]. Canadian Journal of Remote Sensing, 2001, 27(5):568-577 doi: 10.1080/07038992.2001.10854896
    [2]
    Viola P, Jones M, Rapid Object Detection Using a Boosted Cascade of Simple Features[C]. CVPR Colorado, USA, 2001 http://www.researchgate.net/publication/3940582_Rapid_object_detection_using_a_boosted_cascade_of_simple_features
    [3]
    Girshick R, Donahue J, Darrell T, et al. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition, IEEE Computer Society, Columbus, USA, 2014 http://www.researchgate.net/publication/258374356_Rich_feature_hierarchies_for_accurate_object_detection_and_semantic_segmentation/links/0301dd4e0cf23c5c592c85c9.pdf
    [4]
    Girshick R. Fast R-CNN[C]. IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015 http://www.researchgate.net/publication/275669302_Fast_R-CNN
    [5]
    Ren S, He K, Girshick R, et al. Faster R-CNN:Towards Real-time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39:1137-1149 doi: 10.1109/TPAMI.2016.2577031
    [6]
    Dai J, Li Y, He K, et al. R-FCN: Object Detection via Region-based Fully Convolutional Networks[C]. CVPR, Las Vegas, USA, 2016 http://www.researchgate.net/publication/303409473_R-FCN_Object_Detection_via_Region-based_Fully_Convolutional_Networks
    [7]
    Redmon J, Divvala S, Girshick R, et al. You Only Look Once: Unified, Real-Time Object Detection[C]. CVPR. Las Vegas, USA, 2016 https://www.researchgate.net/publication/278049038_You_Only_Look_Once_Unified_Real-Time_Object_Detection
    [8]
    Liu W, Anguelov D, Erhan D, et al. SSD: Single Shot MultiBox Detector[C]. ECCV 2016, Amsterdam, Netherlands, 2016 doi: 10.1007/978-3-319-46448-0_2
    [9]
    Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-scale Image Recognition[C]. CVPR, Columbus, USA, 2014 http://www.oalib.com/paper/4068791
    [10]
    Cai Z, Fan Q, Feris R S, et al. A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection[C]. European Conference on Computer Vision, The Netherlands, 2016 http://www.springerlink.com/content/fulltext.pdf?id=doi:10.1007/978-3-319-46493-0_22
    [11]
    Hariharan B, Arbelaez P, Girshick R, et al. Hypercolumns for Object Segmentation and Fine-grained Localization[C]. CVPR, Boston, USA, 2015 http://www.researchgate.net/publication/308808582_Hypercolumns_for_object_segmentation_and_fine-grained_localization
    [12]
    Kong T, Yao A, Chen Y, et al. HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection[C]. CVPR, Las Vegas, USA, 2016 http://www.researchgate.net/publication/311609212_HyperNet_Towards_Accurate_Region_Proposal_Generation_and_Joint_Object_Detection
    [13]
    Liu W, Rabinovich A, Berg A C. ParseNet: Looking Wider to See Better[C]. CVPR, Boston, USA, 2015 http://www.researchgate.net/profile/Andrew_Rabinovich2/publication/278413297_ParseNet_Looking_Wider_to_See_Better/links/558c3ab008ae40781c2042f7.pdf
    [14]
    Bell S, Zitnick C L, Bala K, et al. Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016 http://www.oalib.com/paper/4016398#.XQb1KPnEyFM
    [15]
    Shrivastava A, Gupta A, Girshick R. Training Region Based Object Detectors with Online Hard Example Mining[C]. CVPR, Las Vegas, USA, 2016
    [16]
    Lin T Y, Goyal P, Girshick R, et al. Focal Loss for Dense Object Detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017(99):2999-3007 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/136140968800200204
    [17]
    Krizhevsky A, Sutskever I, Hinton G. Image Net Classification with Deep Convolutional Neural Networks[J]. Advances in Neural Information Processing Systems, 2012, 25(2):1097-1105 http://www.researchgate.net/publication/267960550_ImageNe
    [18]
    Erhan D, Szegedy C, Toshev A, et al. Scalable Object Detection Using Deep Neural Networks[C]. IEEE Conference on Computer Vision and Pattern Recognition, Washington D C, USA, 2014 http://www.researchgate.net/publication/259212328_Scalable_Object_Detection_using_Deep_Neural_Networks
    [19]
    Fu C Y, Liu W, Ranga A, et al. DSSD: Deconvolutional Single Shot Detector[C]. CVPR, Honolulu, USA, 2017 http://www.researchgate.net/publication/312759848_DSSD_Deconvolutional_Single_Shot_Detector
    [20]
    Lin T Y, Dollár P, Girshick R, et al. Feature Pyramid Networks for Object Detection[C]. CVPR, Honolulu, USA, 2017 http://www.researchgate.net/publication/311573567_Feature_Pyramid_Networks_for_Object_Detection
    [21]
    Poirson P, Ammirato P, Fu C Y, et al. Fast Single Shot Detection and Pose Estimation[C]. Fourth International Conference on 3D Vision, IEEE, Cornell, USA, 2016 http://www.researchgate.net/publication/308320592_Fast_Single_Shot_Detection_and_Pose_Estimation
  • Related Articles

    [1]HE Chaoyang, XU Qiang, JU Nengpan, XIE Mingli. Optimization of Model Scheduling Algorithm in Real-Time Monitoring and Early Warning of Landslide[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7): 970-982. DOI: 10.13203/j.whugis20200314
    [2]XU Zheng, ZOU Bin, ZHENG Zhong, PU Qiang, YANG Zhonglin, SUN Guoqing. A Dynamic Healthy-Route Search Algorithm and System Realization[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 145-152. DOI: 10.13203/j.whugis20150749
    [3]ZHU Qing, HAN Huipeng, YU Jie, DU Zhiqiang, ZHANG Junxiao, WU Chen, SHEN Fuqiang. Multi-objective Optimization Scheduling Method for UAV Resources in Emergency Surveying and Mapping[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1608-1615. DOI: 10.13203/j.whugis20130000
    [4]ZHANG Dengyi, GUO Lei, WANG Qian, ZOU Hua. An Improved Single-orbit Scheduling Method for Agile ImagingSatellite Towards Area Target[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8): 901-905. DOI: 10.13203/j.whugis20130233
    [5]DONG Jian, PENG Rencan, ZHENG Yidong. An Improved Algorithm of Point by Point Interpolation by Using Local Dynamic Optimal Delaunay Triangulation Network[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 613-617.
    [6]TU Wei, LI Qingquan, FANG Zhixiang. A Heuristic Algorithm for Large Scale Vehicle Routing Problem[J]. Geomatics and Information Science of Wuhan University, 2013, 38(3): 307-310.
    [7]SONG Huanhuan, WANG Shuzong. Application of Information Entropy Theory to Analyzing Tasks Scheduling for Submarine Combat System[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1477-1481.
    [8]YANG Chuncheng, XIE Peng, HE Liesong, ZHOU Xiaodong. Data Scheduling for Map Data Reading[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 166-169.
    [9]Li Mingshan, Lu Zhiyan. The Generalized Backtracking Method & the Optimum Task Scheduling of the Parallel Computer System[J]. Geomatics and Information Science of Wuhan University, 1996, 21(1): 90-95.
    [10]Zheng Zhaobao. An Automatic Searching Method of the Image Occlusion[J]. Geomatics and Information Science of Wuhan University, 1988, 13(4): 71-75.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return