TANG Jun, MAO Wenfei. Multi-Scale ARMA Residual Correction Model for Detecting Pre-earthquake Ionospheric Anomalies[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 791-798. DOI: 10.13203/j.whugis20170321
Citation: TANG Jun, MAO Wenfei. Multi-Scale ARMA Residual Correction Model for Detecting Pre-earthquake Ionospheric Anomalies[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 791-798. DOI: 10.13203/j.whugis20170321

Multi-Scale ARMA Residual Correction Model for Detecting Pre-earthquake Ionospheric Anomalies

Funds: 

The National Natural Science Foundation of China 41504025

The National Natural Science Foundation of China 41761089

the Natural Science Foundation of Jiangxi Province 20181BAB203027

the China Postdoctoral Science Foundation (CPSF) 2015M582312

the Foundation of Jiangxi Educational Committee GJJ170362

More Information
  • Author Bio:

    TANG Jun, PhD, associate professor, specializes in GNSS data processing and ionosphere model estimation. E-mail:tj928@163.com

  • Received Date: June 23, 2018
  • Published Date: June 04, 2019
  • To improve the prediction accuracy of the background values of the ionospheric total electronic content (TEC) disturbance, we have proposed multi-scale autoregressive moving average (ARMA) residual correction model (MARCM) by comparing the precision of this method, ARMA model, inter quartile range(IQR)and sliding window method in predicting the ionospheric total electronic content reference background values. The results show that the average relative accuracy of TEC background value predicted by MARCM is 89.78%, which is higher than the ARMA model, IQR and sliding window method with values of 5.18%, 1.41% and 1.42% respectively and show that the percentage of absolute residual values less than or equal to 3.0 TECU predicted by MARCM is 91.67%, significantly better than the other three methods, It is demorstrated that using MARCM to detect pre-earthquake ionospheric anomalies is feasible. We use this method to detect pre-earthquake ionospheric anomalies of the earthquake happened in Lushan on April 20, 2013, and prove the effectiveness of the proposed method. The results show that obviously ionospheric positive anomalies on 9 and 13 days before the earthquake and apparently ionospheric negative anomalies on 1 to 4 days before the earthquake, are most likely to be caused by the earthquake. And positive anomalies mainly emerge in the 08:00 UT to 10:00 UT, the negative anomalies are mainly concentrated in 00:00 UT to 14:00 UT
  • [1]
    张小红, 任晓东, 吴风波, 等.震前电离层TEC异常探测新方法[J].地球物理学报, 2013, 56(2):441-449 http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201302008

    Zhang Xiaohong, Ren Xiaodong, Wu Fengbo, et al. A New Method for Detection of Pre-earthquake Ionospheric Anomalies[J]. Chinese Journal of Geophysics, 2013, 56(2):441-449 http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201302008
    [2]
    祝芙英, 吴云, 林剑, 等.震前电离层TEC异常探测方法研究[J].大地测量与地球动力学, 2009, 29(3):50-54 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz200903009

    Zhu Fuying, Wu Yun, Lin Jian, et al. Study on Method of Detecting Ionospheric the Anomaly Before Earthquake[J]. Journal of Geodesy and Geodynamics, 2009, 29(3):50-54 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz200903009
    [3]
    林剑, 吴云, 祝芙英.震前电离层TEC异常扰动的研究[J].武汉大学学报·信息科学版, 2009, 34(8):975-978 http://ch.whu.edu.cn/CN/abstract/abstract1317.shtml

    Lin Jian, Wu Yun, Zhu Fuying. Ionosphere TEC Anomalous Disturbance of Pre-seism[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8):975-978 http://ch.whu.edu.cn/CN/abstract/abstract1317.shtml
    [4]
    Shah M, Jin S.Statistical Characteristics of Seismoio-nospheric GPS TEC Disturbances Prior to Global Mw ≥ 5.0 Earthquakes (1998-2014)[J]. Journal of Geodynamics, 2015, 92:42-49 doi: 10.1016/j.jog.2015.10.002
    [5]
    Tang J, Yao Y, Zhang L.Temporal and Spatial Iono-spheric Variations of 20 April 2013 Earthquake in Yaan, China[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(11):2242-2246 doi: 10.1109/LGRS.2015.2463081
    [6]
    Yao Y, Chen P, Wu H, et al. Analysis of Ionospheric Anomalies Before the 2011 M9.0 Japan Earthquake[J]. Chinese Science Bulletin, 2012, 57(5):500-510 doi: 10.1007/s11434-011-4851-y
    [7]
    Liu J Y, Chuo Y J, Shan S J, et al. Pre-earthquake Ionospheric Anomalies Registered by Continuous GPS TEC Measurements[J]. Annales Geophysicae, 2004, 22(5):1585-1593 doi: 10.5194/angeo-22-1585-2004
    [8]
    Ulukavak M, Yalcinkaya M. Precursor Analysis of Ionospheric GPS-TEC Variations Before the 2010 M 7.2 Baja California Earthquake[J]. Geomatics, Natural Hazards and Risk, 2016, 8(2):295-308 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/19475705.2016.1208684
    [9]
    李磊.基于GNSS的电离层总电子含量的预测与应用研究[D].大连: 大连海事大学, 2015 http://cdmd.cnki.com.cn/Article/CDMD-10151-1015640050.htm

    Li Lei. Research on Forecasting and Application of the Ionospheric Total Electron Content Based on GNSS[D]. Dalian: Dalian Maritime University, 2015 http://cdmd.cnki.com.cn/Article/CDMD-10151-1015640050.htm
    [10]
    Akhoondzadeh M. Least Square Support Vector Machine for Detection of TEC-Seismo-Ionospheric Anomalies Associated with the Powerful Nepal Earthquake (Mw=7.5) of 25 April 2015[J]. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 2016, 3(8):3-11 https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-8/3/2016/isprs-annals-III-8-3-2016.pdf
    [11]
    刘静, 万卫星.中国6.0级以上地震临震电离层扰动时空分布特征研究[J].地球物理学报, 2014, 57(7):2181-2189 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HYC201505130000011254

    Liu Jing, Wan Weixing. Spatial-Temporal Distribution of the Ionospheric Perturbations Prior to Ms ≥ 6.0 Earthquakes in China Main Land[J]. Chinese Journal of Geophysics, 2014, 57(7):2181-2189 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HYC201505130000011254
    [12]
    陈鹏, 陈家君. 2012-04-11苏门答腊地震同震电离层异常研究[J].武汉大学学报·信息科学版, 2015, 40(7):882-886 http://ch.whu.edu.cn/CN/abstract/abstract3293.shtml

    Chen Peng, Chen Jiajun. Coseismic Ionospheric Anomaly of Sumatra Earthquake in April 11th, 2012[J]. Geomatics and Information Science of Wuhan University, 2015, 40(7):882-886 http://ch.whu.edu.cn/CN/abstract/abstract3293.shtml
    [13]
    马一方, 姜卫平, 席瑞杰.利用全球电离层地图分析芦山地震电离层异常变化[J].武汉大学学报·信息科学版, 2015, 40(9):1274-1278 http://ch.whu.edu.cn/CN/abstract/abstract3333.shtml

    Ma Yifang, Jiang Weiping, Xi Ruijie. Analysis of Seismo-ionospheric Anomalies in Vertical Total Electron Content of GIM for Lushan Earthquake[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9):1274-1278 http://ch.whu.edu.cn/CN/abstract/abstract3333.shtml
    [14]
    郑近德, 程军圣, 杨宇.改进的EEMD算法及其应用研究[J].振动与冲击, 2013, 32(21):21-26, 46 doi: 10.3969/j.issn.1000-3835.2013.21.004

    Zheng Jinde, Cheng Junsheng, Yang Yu. Modified EEMD Algorithm and Its Applications[J]. Journal of Vibration and Shock, 2013, 32(21):21-26, 46 doi: 10.3969/j.issn.1000-3835.2013.21.004
    [15]
    李磊, 张淑芳, 胡青, 等. ARMA模型在地震电离层TEC异常探测中的应用[J].大地测量与地球动力学, 2015, 35(1):62-66 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz201501014

    Li Lei, Zhang Shufang, Hu Qing, et al. Application of ARMA Model in Detecting Ionospheric TEC Anomaly Prior to Earthquake[J]. Journal of Geodesy and Geodynamics, 2015, 35(1):62-66 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz201501014
    [16]
    陈鹏, 姚宜斌, 吴寒.利用时间序列分析预报电离层TEC[J].武汉大学学报·信息科学版, 2011, 36(3):267-270 http://ch.whu.edu.cn/CN/abstract/abstract487.shtml

    Chen Peng, Yao Yibin, Wu Han. TEC Prediction of Ionosphere Based on Time Series Analysis[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3):267-270 http://ch.whu.edu.cn/CN/abstract/abstract487.shtml
    [17]
    张梅军, 陈灏, 曹勤, 等.基于SVM信号延拓改进的EEMD方法[J].振动、测试与诊断, 2013, 33(1):93-98, 168 doi: 10.3969/j.issn.1004-6801.2013.01.018

    Zhang Meijun, Chen Hao, Cao Qin, et al. The Improved EEMD Method Based on SVM Signal Continuation[J]. Journal of Vibration, Measurement & Diagnosis, 2013, 33(1):93-98, 168 doi: 10.3969/j.issn.1004-6801.2013.01.018
    [18]
    欧明, 甄卫民, 徐继生, 等.利用数据同化技术实现区域电离层TEC重构[J].武汉大学学报·信息科学版, 2017, 42(8):1075-1081 http://ch.whu.edu.cn/CN/abstract/abstract5799.shtml

    Ou Ming, Zhen Weimin, Xu Jisheng, et al. Regional Ionospheric TEC Reconstruction by Data Assimilation Technique[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8):1075-1081 http://ch.whu.edu.cn/CN/abstract/abstract5799.shtml
    [19]
    谢益炳, 伍吉仓, 陈俊平, 等.芦山Ms7.0地震前后电离层电子含量扰动分析[J].地震学报, 2014, 36(1):95-105 doi: 10.3969/j.issn.0253-3782.2014.01.008

    Xie Yibing, Wu Jicang, Chen Junping, et al. Perturbation Analysis of the Ionospheric TEC Before and After the Lushan Ms7.0 Earthquake[J]. Acta Seismologica Sinica, 2014, 36(1):95-105 doi: 10.3969/j.issn.0253-3782.2014.01.008
  • Related Articles

    [1]TANG Jun, ZHONG Zhengyu, DING Mingfei, WU Xuequn. Ionospheric TEC Prediction in China Based on ENN Improved by PSO Algorithm[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1867-1878. DOI: 10.13203/j.whugis20220254
    [2]LI Yongtao, ZHAO Ang, LI Jianwen, CHE Tongyu, PAN Lin, CHEN Chen. Regional Ionospheric TEC Modeling and Accuracy Analysis Based on Observations from a Station[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1): 69-78. DOI: 10.13203/j.whugis20190286
    [3]OU Ming, ZHEN Weimin, XU Jisheng, YU Xiao, LIU Yiwen, LIU Dun. Regional Ionospheric TEC Reconstruction by Data Assimilation Technique[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1075-1081. DOI: 10.13203/j.whugis20150297
    [4]SONG Fucheng, SHI Shuangshuang, FENG Jiandi. Construction of Ionospheric TEC Assimilation Model Based on Chapman Function[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 784-790. DOI: 10.13203/j.whugis20150101
    [5]WANG Zemin, CHE Guowei, AN Jiachun. Comprehensive Observation and Analysis of Weddell Sea Anomaly in Antarctica[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1421-1427. DOI: 10.13203/j.whugis20150270
    [6]NIE Wenfeng, HU Wusheng, PAN Shuguo, SONG Yubing. )Extraction of Regional Ionospheric TEC from GPS Dual Observation[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1022-1027. DOI: 10.13203/j.whugis20130046
    [7]TANG Jun, YAO Yibin, CHEN Peng, ZHANG Shun. Prediction Models of Ionospheric TEC Improved by EMD Method[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 408-411.
    [8]CHEN Peng, YAO Yibin, WU Han. TEC Prediction of Ionosphere Based on Time Series Analysis[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 267-270.
    [9]LIN Jian, WU Yun, ZHU Fuying. Ionosphere TEC Anomalous Disturbance of Pre-seism[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 975-978.
    [10]MENG Yang, WANG Zemin, E Dongchen. Ionopsheric TEC Anomalies of Pre-Earthquake Based on GPS Data[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1): 81-84.
  • Cited by

    Periodical cited type(28)

    1. 吕峥,孙群,温伯威,张付兵,马京振. 顾及形状相似性的道路与居民地协同化简方法. 地球信息科学学报. 2024(05): 1270-1282 .
    2. 铁占琦. 利用改进的Hausdorff距离匹配多尺度线要素. 地理空间信息. 2024(05): 62-65 .
    3. 王庆社,王雅欣,姜青香,郭思慧. “天地图·北京”多源道路数据融合关键技术研究. 北京测绘. 2024(06): 874-879 .
    4. 陈钉均,梁芮嘉. 基于特征聚类驾驶员服从度跟驰模型参数标定. 计算机仿真. 2024(10): 126-132 .
    5. 齐杰,王中辉,李驿言. 基于图卷积神经网络的道路网匹配. 测绘通报. 2023(12): 19-24+44 .
    6. 吴冰娇,王中辉,杨飞. 用于多尺度道路网匹配的语义相似性计算模型. 测绘科学. 2022(03): 166-173 .
    7. 蒋阳升,俞高赏,胡路,李衍. 基于聚类站点客流公共特征的轨道交通车站精细分类. 交通运输系统工程与信息. 2022(04): 106-112 .
    8. 周秀华,李乃强. 基于多种相似度特征的道路实体融合方法. 测绘通报. 2021(08): 102-105+157 .
    9. 秦育罗,宋伟东,张在岩,孙小荣. 顾及几何特征和拓扑连续性的道路网匹配方法. 测绘通报. 2021(08): 55-60 .
    10. 杨飞,王中辉. 河系几何相似性的层次度量方法. 地球信息科学学报. 2021(12): 2139-2150 .
    11. 程绵绵,孙群,季晓林,赵云鹏. 改进平均Fréchet距离法及在化简评价中的应用. 测绘科学. 2020(03): 170-177 .
    12. 赵元棣,田英杰,吴佳馨. 航空器飞行轨迹相似性度量及聚类分析. 中国科技论文. 2020(02): 249-254 .
    13. Wenyue GUO,Anzhu YU,Qun SUN,Shaomei LI,Qing XU,Bowei WEN,Yuanfu LI. A Multisource Contour Matching Method Considering the Similarity of Geometric Features. Journal of Geodesy and Geoinformation Science. 2020(03): 76-87 .
    14. 秦育罗,郭冰,孙小荣. 改进Hausdorff距离及其在多尺度道路网匹配中的应用. 测绘科学技术学报. 2020(03): 313-318 .
    15. 郝志伟,李成名,殷勇,武鹏达,吴伟. 一种基于Fréchet距离的断裂等高线内插算法. 测绘通报. 2019(01): 65-68+74 .
    16. 郭文月,刘海砚,孙群,余岸竹,丁梓越. 顾及几何特征相似性的多源等高线匹配方法. 测绘学报. 2019(05): 643-653 .
    17. 宗琴,彭荃,秦万英. 一种基于模糊矩阵的空间面对象相似性度量算法. 北京测绘. 2019(10): 1218-1221 .
    18. 李兆兴,翟京生,武芳. 线要素综合的形状相似性评价方法. 武汉大学学报(信息科学版). 2019(12): 1859-1864 .
    19. 周家新,陈建勇,单志超,陈长康. 航空磁探中潜艇目标的联合估计检测方法研究. 兵工学报. 2018(05): 833-840 .
    20. 郭宁宁,盛业华,吕海洋,黄宝群,张思阳. 径向基函数神经网络的路网自动匹配算法. 测绘科学. 2018(03): 45-50 .
    21. 张瀚,李静,吕品,徐永志,刘格林. 六角格网的弧线矢量数据量化拟合方法. 计算机辅助设计与图形学学报. 2018(04): 557-567 .
    22. 邵世维,刘辉,肖立霞,王恒. 一种基于Fréchet距离的复杂线状要素匹配方法. 武汉大学学报(信息科学版). 2018(04): 516-521 .
    23. 苏满佳,张逸鸿,谢荣臻,朱海飞,管贻生,毛世鑫. 连续软体机器人的结构范型与形态复现. 机器人. 2018(05): 640-647+672 .
    24. 宗琴,姜树辉,刘艳霞. 多尺度矢量地图中模糊相似变换及其度量模型. 测绘科学. 2018(11): 72-78 .
    25. 郭文月,刘海砚,孙群,余岸竹,季晓林. 利用最长公共子序列度量线要素相似性的方法. 测绘科学技术学报. 2018(05): 518-523 .
    26. 郭宁宁,盛业华,黄宝群,吕海洋,张思阳. 基于人工神经网络的多特征因子路网匹配算法. 地球信息科学学报. 2016(09): 1153-1159 .
    27. 杨亚辉. 利用几何相似性快速测量鱼重的数学模型. 电子技术与软件工程. 2016(20): 182-183 .
    28. 逯跃锋,张奎,刘硕,吴跃,赵硕,李强,冯晨. 一种基于斜率差和方位角的矢量数据匹配算法. 山东大学学报(工学版). 2016(06): 31-39 .

    Other cited types(28)

Catalog

    Article views (1028) PDF downloads (102) Cited by(56)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return