WANG Rupeng, LI Ye, MA Teng, CONG Zheng, GONG Yusen, ZHANG Qiang. Confidence Interval Estimation of Underwater Terrain Aided Position[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 830-836, 916. DOI: 10.13203/j.whugis20170281
Citation: WANG Rupeng, LI Ye, MA Teng, CONG Zheng, GONG Yusen, ZHANG Qiang. Confidence Interval Estimation of Underwater Terrain Aided Position[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 830-836, 916. DOI: 10.13203/j.whugis20170281

Confidence Interval Estimation of Underwater Terrain Aided Position

Funds: 

The National Key Research and Development Program of China 2017YFC0305700

the National Natural Science Foundation of China 51879057

the Fundamental Research Business Funds for the Central Universities HEUCFG201810

More Information
  • Author Bio:

    WANG Rupeng, PhD candidate, specializes in autonomous positioning and navigation of underwater vehicles and environmental map construction. E-mail:wangrupeng@hrbeu.edu.cn

  • Corresponding author:

    LI Ye, PhD, professor. E-mail:liyeheu103@163.com

  • Received Date: December 06, 2018
  • Published Date: June 04, 2019
  • The TAP(terrain aided position) likelihood function reflects the probability of the position of AUV (autonomous underwater vehicle) in space. Due to the strong nonlinearity and randomness of the terrain and the non-Gauss distribution of the measurement error, the likelihood function also shows the characteristics of non-Gauss. The error of TAP is closely related to the local topographic and measurement error. Because the existing method does not consider the local topographic features, the statistical confidence interval of the measurement error is only established, so the estimation results of the TAP are obviously smaller. In this paper, a jump model of the TAP position Xp is established. It can jump to any point in the searching interval, and the probability jumping to any point is positively correlated with the likelihood function of the point. When the confidence of the jump to a certain point is less than α, Xp will not jump to this point and this point is called the boundary point of the confidence interval. Assumed the sum of squares of the matched residuals in the confidence interval of the TAP is quadric surface, Xp is regarded as the parameter of the quadric surface, and the confidence interval of TAP with confidence 1-α can be obtained by the confidence interval estimation method of the surface parameters. The confidence interval obtained by new estimate method is larger than the existing method. The experimental results show that the confidence interval estimation will be abnormal when the measuring beam is less. The increase of the measurement beam can improve the estimation accuracy of the tidal and measurement errors, thus can promote the estimation accuracy of the confidence interval, but the compensation method under the condition of non-Gauss distribution of measurement error is still needed in further work.
  • [1]
    陈小龙. AUV水下地形匹配辅助导航技术研究[D].哈尔滨工程大学, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10217-1014134060.htm

    Chen Xiaolong. AUV Underwater Terrain Mat-ching Aided Navigation Technology[D]. Harbin: Harbin Engineering University, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10217-1014134060.htm
    [2]
    Nygren I. Terrain Navigation for Underwater Vehicles[D]. Sweden: Signal Processing Stockholm, 2005 https://www.researchgate.net/publication/265632151_Terrain_Navigation_for_Underwater_Vehicles
    [3]
    Xie Yingrong. Terrain Aided Navigation[D]. Sweden: Stockholm, 2005
    [4]
    Deborah K M. Terrain Relative Navigation for Sensor-Limited Systems with Application to Underwater Vehicle[D]. Palo Alto: Stanford University, 2011 http://web.stanford.edu/group/arl/projects/terrain-relative-navigation
    [5]
    王汝鹏, 李晔, 马腾, 等.AUV地形匹配导航快速收敛滤波[J].华中科技大学学报(自然科学版), 2018, 46(7):94-97 http://d.old.wanfangdata.com.cn/Periodical/hzlgdxxb201807018

    Wang Rupeng, Li Ye, Ma Teng, etal. AUV Topographic Matching Navigation Fast Convergence Filter[J]. Journal of Huazhong University of Scien-ce and Technology (Natural Science Edition), 2018, 46(7):94-97 http://d.old.wanfangdata.com.cn/Periodical/hzlgdxxb201807018
    [6]
    刘现鹏, 张立华, 王涛, 等.基于航迹线追踪的TERPM定位算法[J].武汉大学学报·信息科学版, 2018, 43(2):219-226 http://ch.whu.edu.cn/CN/abstract/abstract5972.shtml

    Liu Xianpeng, Zhang Lihua, Wang Tao, et al. TERPM Localization Algorithm Based on Track Tracking[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2):219-226 http://ch.whu.edu.cn/CN/abstract/abstract5972.shtml
    [7]
    张凯, 赵建虎, 张红梅.一种基于M估计的水下地形抗差匹配算法[J].武汉大学学报·信息科学版, 2015, 40(4):558-562 http://ch.whu.edu.cn/CN/abstract/abstract3244.shtml

    Zhang Kai, Zhao Jianhu, Zhang Hongmei.An Underwater Terrain Robust Matching Algorithm Based on M Estimation[J]. Geomatics and Information Science of Wuhan University, 2015, 40(4):558-562 http://ch.whu.edu.cn/CN/abstract/abstract3244.shtml
    [8]
    Paull L, Saeedi S, Seto M, et al. AUV Navigation and Localization:A Review[J]. IEEE Journal of Oceanic Engineering, 2014, 39(1):131-149 doi: 10.1109/JOE.2013.2278891
    [9]
    Zeng Z, Lian L, Sammut K, et al. A Survey on Path Planning for Persistent Autonomy of Autonomous Underwater Vehicles[J]. Ocean Engineering, 2015, 110:303-313 doi: 10.1016/j.oceaneng.2015.10.007
    [10]
    Chen L, Wang S, Mcdonald-Maier K, et al. Towards Autonomous Localization and Mapping of AUVs:A Survey[J]. International Journal of Intelligent Unmanned Systems, 2013, 1(2):97-120 doi: 10.1108/20496421311330047
    [11]
    Trees H L V. Detection, Estimation, and Modulation Theory, Part IV, Optimum Array Processing[J]. A Papoulis Probability Random Variables & Stochastic Processes, 2001, 8(10):293-303 http://cn.bing.com/academic/profile?id=ce1ca94f4a41c5ef18f08d8950757273&encoded=0&v=paper_preview&mkt=zh-cn
    [12]
    Box G E P, Jenkins G M, Reinsel G C. Time Series Analysis, Forecasting and Control[M]. 4th ed. New Jersey:John Wiley & Sons, 2008

Catalog

    Article views (1145) PDF downloads (191) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return