DU Juan, LI Wei, ZHANG Penglin. Nighttime Terrestrial Radiation Fog Detection Using Time Series Remote Sensing Data[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1162-1168. DOI: 10.13203/j.whugis20170258
Citation: DU Juan, LI Wei, ZHANG Penglin. Nighttime Terrestrial Radiation Fog Detection Using Time Series Remote Sensing Data[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1162-1168. DOI: 10.13203/j.whugis20170258

Nighttime Terrestrial Radiation Fog Detection Using Time Series Remote Sensing Data

Funds: 

The Key Project of National Natural Science Foundation of China 41331175

More Information
  • Author Bio:

    DU Juan, PhD, lecturer, specializes in remote sensing of environment and disaster. E-mail: dujuan_rs@whu.edu.cn

  • Corresponding author:

    ZHANG Penglin, PhD, professor. E-mail: zpl@whu.edu.cn

  • Received Date: September 04, 2017
  • Published Date: August 04, 2019
  • In this paper, we propose a nighttime terrestrial radiation fog detection model using time series data of Multifunctional Transport Satellite-2 (MTSAT-2), which addresses the difficulty in nighttime fog detection with mono-temporal remote sensing data. The nighttime fog is firstly extracted by using monotemporal image. To take advantage of high temporal resolution of MTSAT-2, the temporal curves of brightness temperature difference between band 1 and band 4 and the temporal curves of brightness temperature of band 1 are built based on the nighttime fog detection result of mono-temporal image. The land surface were separated from the nighttime fog and the low clouds by the bright temperature difference accumulate characteristic established by the temporal curves of brightness temperature difference. The nighttime fog are detected by combining three temporal characteristics with support vector classification. The three temporal characteristics are the bright temperature change accumulate characteristic, slope match characteristic and frequency domain singularity characteristic, which are established by the temporal curves of brightness temperature. The experiment results of two days show that the nighttime terrestrial radiation fog detection using time series data has a higher accuracy than the mono-temporal method.
  • [1]
    孙奕敏.灾害性浓雾[M].北京:气象出版社, 1994

    Sun Yimin. Disaster Fog[M]. Beijing:China Meteorological Press, 1994
    [2]
    Güls I, Bendix J. Fog Detection and Fog Mapping Using Low Cost Meteosat-WEFAX Transmission[J]. Meteorological Applications, 1996, 3(2):179-187
    [3]
    周旋, 周晓中, 吴耀平, 等.利用MODIS数据监测夜间雾[J].武汉大学学报·信息科学版, 2008, 33(6):581-583 http://ch.whu.edu.cn/CN/abstract/abstract1610.shtml

    Zhou Xuan, Zhou Xiaozhong, Wu Yaoping, et al. Detection of Nighttime Fog Using MODIS Data[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6):581-583 http://ch.whu.edu.cn/CN/abstract/abstract1610.shtml
    [4]
    Löw F, Waldner F, Latchininsky A, et al. Timely Monitoring of Asian Migratory Locust Habitats in the Amudarya Delta, Uzbekistan Using Time Series of Satellite Remote Sensing Vegetation Index[J]. Journal of Environmental Management, 2016, 183(3):562-575 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=336b8dedbb67e7cdce824dd3f34978ae
    [5]
    Pan Z, Huang J, Zhou Q, et al. Mapping Crop Phenology Using NDVI Time-Series Derived from HJ-1A/B Data[J]. International Journal of Applied Earth Observations and Geoinformation, 2015, 34(1):188-197 https://www.sciencedirect.com/science/article/pii/S0303243414001755
    [6]
    Lanorte A, Manzi T, Nolè G, et al. On the Use of the Principal Component Analysis (PCA) for Evaluating Vegetation Anomalies from LANDSATTM NDVI Temporal Series in the Basilicata Region (Italy)[C]. ICCSA 2015, Banff, AB, Canada, 2015 doi: 10.1007%2F978-3-319-21410-8_16
    [7]
    文雄飞.陆地辐射雾遥感动态检测方法研究[D].武汉: 武汉大学, 2010 http://cdmd.cnki.com.cn/Article/CDMD-10486-2010166415.htm

    Wen Xiongfei. The Research of Dynamical Detection Method for Radiation Fog over Land Based on Remote Sening Data[D]. Wuhan: Wuhan University, 2010 http://cdmd.cnki.com.cn/Article/CDMD-10486-2010166415.htm
    [8]
    郝增周.黄、渤海海雾遥感辐射特性及卫星监测研究[D].南京: 南京信息工程大学, 2007 http://cdmd.cnki.com.cn/article/cdmd-10300-2007127477.htm

    Hao Zengzhou. Study on Radiation Characteristics and Satellite Monitoring of Sea Fog by Remote Sensing over the Yellow Sea and Bohai Sea[D]. Nanjing: Nanjing University of Information Science and Technology, 2007 http://cdmd.cnki.com.cn/article/cdmd-10300-2007127477.htm
    [9]
    李子华, 杨军, 石春娥.地区性浓雾物理[M].北京:气象出版社, 2008

    Li Zihua, Yang Jun, Shi Chun'e. The Physics of Regional Fog[M]. Beijing:China Meteorological Press, 2008
    [10]
    周小勇, 叶银忠.故障信号检测的小波基选择方法[J].控制工程, 2003, 10(4):308-311 doi: 10.3969/j.issn.1671-7848.2003.04.007

    Zhou Xiaoyong, Ye Yinzhong. Method of Choosing a Wavelet for Fault Detection[J]. Control Engineering of China, 2003, 10(4):308-311 doi: 10.3969/j.issn.1671-7848.2003.04.007
    [11]
    陈希平, 毛海杰, 李炜.基于MATLAB的奇异信号检测中小波基选择研究[J].计算机仿真, 2004, 21(11):48-51 doi: 10.3969/j.issn.1006-9348.2004.11.016

    Chen Xiping, Mao Haijie, Li Wei. Study on Choosing Mother Wavelet for Signal Singularity Detection Based on MATLAB[J]. Computer Simulation, 2004, 21(11):48-51 doi: 10.3969/j.issn.1006-9348.2004.11.016
    [12]
    中国气象科学数据共享服务平台[OL]. http://data.cma.cn/,2017

    China Meteorological Data Service Center[OL]. http://data.cma.cn/,2017
    [13]
    中国气象局监测网络司.地面气象电码手册[M].北京:气象出版社, 1999

    Monitoring Network Division of China Meteorological Administration. Surface Meteorological Code Manual[M]. Beijing:China Meteorological Press, 1999
    [14]
    Bendix J, Cermak J, Thies B. New Perspectives in Remote Sensing of Fog and Low Stratus-TERRA/AQUA-MODIS and MSG[C]. The 3rd International Conference on Fog, Fog Collection and Dew, Cape Town, South Africa, 2004
  • Related Articles

    [1]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [2]LIU Zhiqiang, YUE Dongjie, WANG Hu, ZHENG Dehua. An Approach for Real-Time GPS/GLONASS Satellite Clock Estimation with GLONASS Code Inter-Frequency Biases Compensation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1209-1215. DOI: 10.13203/j.whugis20150542
    [3]RUAN Rengui, WU Xianbing, FENG Laiping. Comparison of Observation Models and Ionospheric Elimination Approaches for Single Frequency Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1023-1028.
    [4]ZOU Xuan, JIANG Weiping, SU Lina, LIU Jingnan. A New Single-Frequency PPP Method Using Dynamic Reference Network[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 403-407.
    [5]TU Rui, HUANG Guanwen, ZHANG Qin, WANG Li. PPP Algorithm of Single Frequency Based on Corrections of Single-base Station and Ionospheric Parameters Estimation[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2): 170-173.
    [6]TU Rui, HUANG Guanwen, ZHANG Qin, WANG Li. The Research of Dual Frequency Solution Method for Single Frequency Precise Point Positioning(PPP) Based on SEID Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1187-1190.
    [7]SHI Chuang, GU Shengfeng, GENG Changjiang, SONG Weiwei. High-Precision Single-Frequency Point Positioning with Randomness of Ionosphere Delay Correction in Consideration[J]. Geomatics and Information Science of Wuhan University, 2011, 36(7): 807-810.
    [8]LIU Jihua, OU Jikun, SUN Baoqi, ZHONG Shiming. The GEO Satellite Precise Orbit Determination Based on Inter-satellite Single Difference Method[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 24-28.
    [9]SONG Weiwei, SHI Chuang, YAO Yibin, YE Shirong. Ionosphere Delay Processing Methods and Positioning Precision of Single Frequency Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 778-781.
    [10]ZHANG Xiaohong, LI Xingxing, GUO Fei, ZHANG Ming. Realization and Precision Analysis of Single-Frequency Precise Point Positioning Software[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8): 783-787.
  • Cited by

    Periodical cited type(11)

    1. 段博文,白征东,郭锦萍. 北斗二号卫星伪距偏差分析与建模. 测绘工程. 2024(02): 18-27 .
    2. 高扬,沙海,楚恒林,王梦丽. 北斗B1C、B2a信号非理想性分析及接收约束建议. 武汉大学学报(信息科学版). 2023(04): 587-592 .
    3. 耿涛,李钟兴,谢新,马壮,赵齐乐. GNSS接收机伪距偏差确定方法及其对定位的影响. 武汉大学学报(信息科学版). 2023(07): 1134-1145 .
    4. 周中华,万祥,程艳,刘志忠,汪文君,张雪丽. 一种地基GNSS接收机差分码偏差估算方法. 空间科学学报. 2022(01): 170-178 .
    5. 许海林,周恩泽,童梦想,鄂盛龙,田翔,罗颖婷. GPS/BDS/Galileo单点定位精度分析. 测绘地理信息. 2022(04): 19-24 .
    6. 李浩东,赵齐乐,陶钧,龙宇浩. 北斗三号卫星FCB估计及其模糊度固定. 武汉大学学报(信息科学版). 2022(09): 1439-1446 .
    7. 慕仁海,党亚民,许长辉. BDS-3新频点单点定位研究. 测绘通报. 2021(03): 12-17 .
    8. 毛飞宇,龚晓鹏,辜声峰,王琛琛,楼益栋. 北斗三号卫星导航信号接收机端伪距偏差建模与验证. 测绘学报. 2021(04): 457-465 .
    9. 徐宗秋,丁新展,徐彦田,唐龙江,李磊,胡艳阳. BDS静态精密单点定位模糊度固定解精度分析. 测绘科学. 2019(07): 30-34 .
    10. 李森,周命端,陈积旭. 北斗数据工程控制网应用实验及精度分析. 测绘科学. 2019(09): 1-6 .
    11. 唐卫明,刘前,高柯夫,邓辰龙,崔健慧,沈明星. 北斗伪距码偏差对基线解算的影响分析. 武汉大学学报(信息科学版). 2018(08): 1199-1206 .

    Other cited types(13)

Catalog

    Article views PDF downloads Cited by(24)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return