WANG Zhangang, WU Zixing, WANG Xianghong. Disjoint Region Merging and Topological Relation Computing Induced by Semantic Scale[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1712-1718. DOI: 10.13203/j.whugis20170009
Citation: WANG Zhangang, WU Zixing, WANG Xianghong. Disjoint Region Merging and Topological Relation Computing Induced by Semantic Scale[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1712-1718. DOI: 10.13203/j.whugis20170009

Disjoint Region Merging and Topological Relation Computing Induced by Semantic Scale

Funds: 

The National Natural Science Foundation of China 41672326

The National Natural Science Foundation of China 41202238

the Fundamental Research Funds for the Central Universities 

More Information
  • Author Bio:

    WANG Zhangang, PhD, associate professor, specializes in the mathematical geology, 3D geological modeling and geological information system.E-mail:millwzg@163.com

  • Received Date: December 24, 2017
  • Published Date: November 04, 2018
  • Topological relations vary with the changes of semantic scales.Complex regions with diffe-rent semantic scales are merged by a finite number of simple regions and their topological relations have to be updated.The current methods make use of inferred combinatorial tables based on basic topological relations between simple regions.However, these methods are generally only applicable to simple objects and have multiple solutions.This paper presents a computation approach of modeling scale dependences of topological relations based on the 9-intersection (9I) model.In terms of the disconnected region merging and adjacent region merging, 9I-based matrix operators are defined for computing directly topological relations of the coarse semantic scale from the relations of the detailed scale.The computation results of the 9I-based matrix operators have no multiple solutions, and the computation domain can cover for all possible topological relations between complex regions.The 9I-based matrix operators can be extended to process composite regions composed of disconnected simple regions by eliminating ambiguities.
  • [1]
    Goodchild M F.Metrics of Scale in Remote Sensing and GIS[J].International Journal of Applied Earth Observation and Geoinformation, 2001, 3(2):114-120 doi: 10.1016/S0303-2434(01)85002-9
    [2]
    李志林.地理空间数据处理的尺度理论[J].地理信息世界, 2005, 3(2):1-5 doi: 10.3969/j.issn.1672-1586.2005.02.001

    Li Zhilin.A Theoretical Discussion on the Scale Issue in Geospatial Data Handling[J].Geomatics World, 2005, 3(2):1-5 doi: 10.3969/j.issn.1672-1586.2005.02.001
    [3]
    李霖, 李德仁.GIS中二维空间目标的非原子性和尺度性[J].测绘学报, 1994, 23(4):315-321 doi: 10.3321/j.issn:1001-1595.1994.04.012

    Li Lin, Li Deren.Non-atomic Feature and Scale Effect of Two Dimensional Spatial Objects in GIS[J].Acta Geodaetica et Cartographica Sinica, 1994, 23(4):315-321 doi: 10.3321/j.issn:1001-1595.1994.04.012
    [4]
    刘凯, 毋河海, 胡洁, 等.地理信息尺度的三重概念及其变换[J].武汉大学学报·信息科学版, 2008, 33(11):1178-1181 http://ch.whu.edu.cn/CN/abstract/abstract1746.shtml

    Liu Kai, Wu Hehai, Hu Jie, et al.Three-Tiered Concepts of Scale of Geographical Information and Its Transformation[J].Geomatics and Information Science of Wuhan University, 2008, 33(11):1178-1181 http://ch.whu.edu.cn/CN/abstract/abstract1746.shtml
    [5]
    李霖, 应申.空间尺度基础性问题研究[J].武汉大学学报·信息科学版, 2005, 30(3):119-123 http://ch.whu.edu.cn/CN/abstract/abstract2133.shtml

    Li Lin, Ying Shen.Fundamental Problem on Spatial Scale[J].Geomatics and Information Science of Wuhan University, 2005, 30(3):119-123 http://ch.whu.edu.cn/CN/abstract/abstract2133.shtml
    [6]
    吴凡, 李霖.空间数据多尺度表达模型及其可视化[M].北京:科学出版社, 2005

    Wu Fan, Li Lin.Spatial Data Multi-scale Expression Model and Its Visualization[M].Beijing:Science Press, 2005
    [7]
    杜世宏.多尺度空间关系理论与实践[M].北京:科学出版社, 2014

    Du Shihong.Theory and Practice of Multi-scale Spatial Relations[M].Beijing:Science Press, 2014
    [8]
    Tryfona N, Egenhofer M J.Consistency Among Parts and Aggregates:A Computational Model[J].Transactions in GIS, 1996, 1(3):189-206 doi: 10.1111/tgis.1996.1.issue-3
    [9]
    Nguyen V H, Parent C, Spaccapietra S.Complex Regions in Topological Queries[C].The International Conference on Spatial Information Theory: COSIT97, Pennsylvania, USA, 1997
    [10]
    Du S H, Wang Q, Guo L.Modeling the Scale Dependences of Topological Relations Between Lines and Regions Induced by Reduction of Attributes[J].International Journal of Geographical Information Science, 2010, 24(11):1649-1686 doi: 10.1080/13658811003591672
    [11]
    Du S, Guo L, Wang Q.A Scale-Explicit Model for Checking Directional Consistency in Multi-resolution Spatial Data[J].International Journal of Geographical Information Science, 2010, 24(3):465-485 doi: 10.1080/13658810802629360
    [12]
    Du S H, Feng C C, Wang Q.Multi-scale Qualitative Location:A Direction-Based Model[J].Computers, Environment and Urban Systems, 2013, 41(4):151-166 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0231547114/
    [13]
    Du S H, Feng C C, Guo L.Integrative Representation and Inference of Qualitative Locations About Points, Lines, and Polygons[J].International Journal of Geographical Information Science, 2015, 29(6):980-1006 doi: 10.1080/13658816.2015.1004333
    [14]
    Zhou X G, Chen J, Zhan F B, et al.A Euler Number-Based Topological Computation Model for Land Parcel Database Updating[J].International Journal of Geographical Information Science, 2013, 27(10):1983-2005 doi: 10.1080/13658816.2013.780607
    [15]
    Egenhofer M J.Deriving the Composition of Binary Topological Relations[J].Journal of Visual Languages and Computing, 1994, 5(2):133-149 doi: 10.1006/jvlc.1994.1007
    [16]
    Egenhofer M J, Franzosa R D.Point-set Topological Spatial Relations[J].International Journal of Geographical Information Systems, 1991, 5(2):161-174 doi: 10.1080/02693799108927841
    [17]
    Egenhofer M J, Herring J R.Categorizing Binary Topological Relations Between Regions, Lines, and Points in Geographic Databases[R].Department of Surveying Engineering, University of Maine, Orono, 1990
    [18]
    Herring J R.OpenGIS Implementation Specification for Geographic Information-Simple Feature Access-Part 2: SQL Option[EB/OL].http://www.opengeospatial.org/standards/sfs/,2010
    [19]
    Schneider M, Behr T.Topological Relationships Between Complex Spatial Objects[J].ACM Transactions on Database Systems, 2006, 31(1):39-81 doi: 10.1145/1132863
    [20]
    Li S J.A Complete Classification of Topological Relations Using the 9-Intersection Method[J].International Journal of Geographical Information Science, 2006, 20(6):589-610 doi: 10.1080/13658810600661383
    [21]
    Clementini E, Felice P D.A Spatial Model for Complex Objects with a Broad Boundary Supporting Queries on Uncertain Data[J].Data & Knowledge Engineering, 2001, 37(3):285-305 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0210250879
    [22]
    Worboys M F, Bofakos P.A Canonical Model for a Class of Areal Spatial Objects[C].The 3rd International Symposium on Advances in Spatial Databa-ses, Singapore, 1993
    [23]
    王占刚, 杜群乐, 王想红.复杂区域对象拓扑关系分解与计算[J].测绘学报, 2017, 46(8):1047-1057 http://d.old.wanfangdata.com.cn/Periodical/chxb201708014

    Wang Zhangang, Du Qunle, Wang Xianghong.Dividing and Computing Topological Relations Between Complex Regions[J].Acta Geodaetica et Cartographica Sinica, 2017, 46(8):1047-1057 http://d.old.wanfangdata.com.cn/Periodical/chxb201708014
  • Related Articles

    [1]LIU Lin, MA Zepeng, SUN Yi, LI Wanwu, XIANG Zicheng. Semantic Segmentation of Street View and Multi-dimensional Feature Identification of City Based on MS-DeepLabV3+[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3): 343-354. DOI: 10.13203/j.whugis20220773
    [2]WU Jie, CHENG Liang, CHU Sensen, RUAN Xiaoguang. Sky View Index-Urban Transportation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 706-717. DOI: 10.13203/j.whugis20200447
    [3]XU Hong, WANG Lubin, FANG Zhixiang, HE Minghui, HOU Xuecheng, ZUO Liang, GUAN Fangli, XIONG Ce, GONG Yiyu, PANG Qinglin, ZHANG Han, SUN Shuteng, NADIRE Aimaier. Street-Facing Architectural Image Mapping and Architectural Style Map Generation Method Using Street View Images[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 659-671. DOI: 10.13203/j.whugis20200445
    [4]CHEN Shanxue, ZHENG Wenjing, ZHANG Jiajia, LI Fangwei. Fast Compression Algorithm for Hyperspectral Image Based on Dispersion Sorting in Transform Domain[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 868-874. DOI: 10.13203/j.whugis20140270
    [5]ZHENG Zhaobao, ZHENG Hong. Fuzzy Image Classification with a Certain Degree[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 482-486. DOI: 10.13203/j.whugis20150712
    [6]ZHENG Zhaobao, PAN Li, ZHENG Hong. Application of Image Correlation Degree to Image Fuzzy Classification[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 574-577. DOI: 10.13203/j.whugis20140736
    [7]Ma Xudong, Yan Li, Cao Wei, Li Wuqi, Wang Yu. A New Image Quality Assessment Model Based onthe Gradient Information[J]. Geomatics and Information Science of Wuhan University, 2014, 39(12): 1412-1418.
    [8]he peipei,  wan youchuan,  gao xianjun,  qin jiaxin. street  view images matching al gorithm based on colorscale-invariant  feature transform[J]. Geomatics and Information Science of Wuhan University, 2014, 39(7): 867-872.
    [9]ZHENG Zhaobao, PAN Li, ZHENG Hong. Image Segmentation Based on Fuzzy Logic Methods[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 397-400. DOI: 10.13203/j.whugis20120209
    [10]MA Hongchao, LI Deren. A New Approach for Image Similarity Definition and Its Application to Image Retrieval[J]. Geomatics and Information Science of Wuhan University, 2001, 26(5): 405-411.
  • Cited by

    Periodical cited type(12)

    1. 陈月,王磊,池深深,王羽,戚鑫鑫,朱尚军. 基于SBAS-InSAR和CNN-GRU模型的采动村庄地表沉降监测预计. 金属矿山. 2025(02): 138-144 .
    2. 倪尔瑞,张建新,邱明剑,权力奥,朱晓峻. 基于SBAS-InSAR技术的淮北市地表沉降监测分析. 北京测绘. 2024(03): 312-317 .
    3. 吴启琛,于瑞鹏,王丽,赵乙泽,范开放. 利用Sentinel-1的山东枣庄高新区地面沉降监测与分析. 地理空间信息. 2024(06): 80-83 .
    4. 杨芳,丁仁军,李勇发. 基于SBAS-InSAR技术的金沙江流域典型滑坡时空演化特征分析. 测绘通报. 2024(11): 102-107 .
    5. 祝杰,李瑜,师宏波,刘洋洋,韩宇飞,邵银星,王坦. 鹤岗煤矿区地面沉降时空特征InSAR时间序列监测研究. 中国地震. 2023(03): 596-608 .
    6. 柴龙飞,魏路,张震. 基于SBAS-InSAR的安徽省宿州市埇桥区2019—2022年地面沉降监测及影响因素分析研究. 安徽地质. 2023(04): 348-352 .
    7. 祝杰,韩宇飞,王坦,李瑜,王阅兵,师宏波,刘洋洋,樊俊屹,邵银星. 2017年九寨沟M_S7.0地震同震地表三维形变场解算研究. 中国地震. 2022(02): 348-359 .
    8. 吴毅彬,葛红斌,刘光庆,刘海旺. 基于MT-InSAR技术的厦门新机场填海区沉降监测. 工程勘察. 2021(02): 57-61 .
    9. 翟振起. 基于InSAR沉降监测技术的城市供水管线安全监测系统开发. 水利科学与寒区工程. 2021(01): 103-106 .
    10. 廖明生,王茹,杨梦诗,王楠,秦晓琼,杨天亮. 城市目标动态监测中的时序InSAR分析方法及应用. 雷达学报. 2020(03): 409-424 .
    11. 熊寻安,王明洲,龚春龙. MT-InSAR技术监测水库土石坝表面变形研究. 测绘地理信息. 2019(05): 78-81 .
    12. 王茹,杨天亮,杨梦诗,廖明生,林金鑫,张路. PS-InSAR技术对上海高架路的沉降监测与归因分析. 武汉大学学报(信息科学版). 2018(12): 2050-2057 .

    Other cited types(4)

Catalog

    Article views (4142) PDF downloads (200) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return