Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 43 Issue 10
Oct.  2018
Turn off MathJax
Article Contents

LI Da, DENG Kazhong, GAO Xiaoxiong, NIU Haipeng. Monitoring and Analysis of Surface Subsidence in Mining Area Based on SBAS-InSAR[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1531-1537. doi: 10.13203/j.whugis20160566
Citation: LI Da, DENG Kazhong, GAO Xiaoxiong, NIU Haipeng. Monitoring and Analysis of Surface Subsidence in Mining Area Based on SBAS-InSAR[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1531-1537. doi: 10.13203/j.whugis20160566

Monitoring and Analysis of Surface Subsidence in Mining Area Based on SBAS-InSAR

doi: 10.13203/j.whugis20160566
Funds:

The National Natural Science Foundation of China 41272389

the Priority Academic Program Development of Jiangsu Higher Education Institutions SZBF2011-6-B35

More Information
  • Author Bio:

    LI Da, postgraduate, specializes in the theory and application of InSAR. E-mail: cumt_ld@163.com

  • Corresponding author: DENG Kazhong, professor. E-mail:kzdeng@cumt.edu.cn
  • Received Date: 2017-05-08
  • Publish Date: 2018-10-05
  • DInSAR technique is easily influenced by decorrelation of time and space and atmosphere delay, SBAS(small baseline subset technique) was applied to process 13 scene of TerraSAR-X data. The residual DEM error, atmospheric delay error and orbit error are estimated and removed. The maximum subsidence rates of 2310 and 1301 working faces were 40 mm/a and 50 mm/a respectively by analyzing the subsidence rate of the coal mine area from 2012 to 2013. It found that the land subsidence of 2306, 2308, 2310 working faces is not obvious before November 15, 2012 by analyzing the timing cumulative subsidence map. Three candidate points of slowly decorrelation filter phase in the 2310 and the 1301 working faces were extracted respectively to be analyzed and we found that the relationship between sedimentation value and time was linear, moreover, the earlier the mining time was, the more the linear variation of the sedimentation characteristics was. Cumulative settlement values obtained by the SBAS and DInSAR were compared and analyzed and turned out that the difference between the two methods was less than 5 mm. The time sequence subsidences of several points in the trending and orientation of 2310 working face were selected and extracted, the surface subsidence of study area in different time period was quantitative analysis by analyzing the displacements of these points. Experiments show that SBAS-InSAR technology has a good application prospect in the monitoring and analysis of surface subsidence in mining area.
  • [1] 何国清, 杨伦, 凌赓娣, 等.矿山开采沉陷学[M].徐州:中国矿业大学出版社, 1994

    He Guoqing, Yang lun, Ling Gengdi, et al. Mining Subsidence Theory[M]. Xuzhou:China University of Mining and Technology Publisher, 1994
    [2] 邹友峰, 邓喀中, 马伟民.开采沉陷控制工程[M].徐州:中国矿业大学出版社, 2003

    Zou Youfeng, Deng Kazhong, Ma Weimin. Mining Subsidence Control Engineering[M]. Xuzhou:China University of Mining and Technology Publisher, 2003
    [3] 杨伦.矿山开采沉陷对环境的损害比地震严重[J].科技导报, 2001(9):53-55 doi:  10.3321/j.issn:1000-7857.2001.09.018

    Yang Lun. The Mining Subsidence Destroys the Environment of Mine Areas More Seriously than Earthquake[J].Science and Technology Review, 2001(9):53-55 doi:  10.3321/j.issn:1000-7857.2001.09.018
    [4] 朱建军, 邢学敏, 胡俊, 等.利用InSAR技术监测矿区地表形变[J].中国有色金属学报, 2011, 21(10):2564-2576 http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb201110022

    Zhu Jianjun, Xing Xuemin, Hu Jun, et al. Monitoring of Ground Surface Deformation in Mining Area with InSAR Technique[J].The Chinese Journal of Nonferrous Metals, 2011, 21(10):2564-2576 http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb201110022
    [5] 胡波, 汪汉胜.二轨法DInSAR技术监测城市地表沉降[J].测绘工程, 2010, 19(2):37-41 doi:  10.3969/j.issn.1006-7949.2010.02.012

    Hu Bo, Wang Hansheng. Urban Land Subsidence Measurement by Two-pass DInSAR[J]. Engineering of Surveying and Mapping, 2010, 19(2):37-41 doi:  10.3969/j.issn.1006-7949.2010.02.012
    [6] 张洁, 胡光道, 罗宁波.InSAR技术在滑坡监测中的应用研究[J].工程地球物理学报, 2004, 1(2):147-153 doi:  10.3969/j.issn.1672-7940.2004.02.010

    Zhang Jie, Hu Guangdao, Luo Ningbo. Landslide Monitoring by InSAR[J].Chinese Journal of Engineering Geophysics, 2004, 1(2):147-153 doi:  10.3969/j.issn.1672-7940.2004.02.010
    [7] 邓喀中, 姚宁, 卢正, 等.D-InSAR监测开采沉陷的实验研究[J].金属矿山, 2009(12):25-27 doi:  10.3321/j.issn:1001-1250.2009.12.006

    Deng Kazhong, Yao Ning, Lu Zheng, et al. Experimental Research on Monitoring Mining Subsidence by D-InSAR Technique[J].Metal Mine, 2009(12):25-27 doi:  10.3321/j.issn:1001-1250.2009.12.006
    [8] 王志勇, 张继贤, 黄国满.基于InSAR的济宁矿区沉降精细化监测与分析[J].中国矿业大学学报, 2014, 43(1):169-174 http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb201401026

    Wang Zhiyong, Zhang Jixian, Huang Guoman. Precise Monitoring and Analysis of the Land Subsi-dence in Jining Coal Mining Area Based on InSAR Technique[J].Journal of China University of Mining and Technology, 2014, 43(1):169-174 http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb201401026
    [9] 范洪冬.InSAR若干关键算法及其在地表沉降监测中的应用研究[D].徐州: 中国矿业大学, 2010 http://cdmd.cnki.com.cn/Article/CDMD-10290-2010280170.htm

    Fan Hongdong. Study on Several Key Algorithms of InSAR Technique and Its Application in Land Sub-sidence Monitoring[D]. Xuzhou: China University of Mining and Technology, 2010 http://cdmd.cnki.com.cn/Article/CDMD-10290-2010280170.htm
    [10] Berardino P, Fornaro G, Lanari R, et al. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383 doi:  10.1109/TGRS.2002.803792
    [11] Hooper A, Zebker H, Segall P, et al. A New Method for Measuring Deformation on Volcanoes and Other Natural Terrains Using InSAR Persistent Scatterers[J]. Geophysical Research Letters, 2004, 31(23):1-5 doi:  10.1029-2004GL021737/
    [12] Hooper A, Segall P, Zebker H. Persistent Scatterer Inteferometric Synthetic Aperture Radar for Crustal Deformation Analysis, with Application to Vlocan Alcedo, Gala pagos[J]. Journal of Geophysical Research, 2007, 112(B7 doi:  10.1029/2006JB004763/full
    [13] 祝传广.融合多源SAR影像的形变监测研究[D].徐州: 中国矿业大学, 2015 http://cdmd.cnki.com.cn/Article/CDMD-10290-1015972420.htm

    Zhu Chuanguang. Study on the Deformation Monitoring Based on Integrating of Multi-source SAR Images[D]. Xuzhou: China University of Mining and Technology, 2015 http://cdmd.cnki.com.cn/Article/CDMD-10290-1015972420.htm
    [14] 李珊珊, 李志伟, 胡俊, 等.SBAS-InSAR技术监测青藏高原季节性冻土形变[J].地球物理学报, 2013, 56(5):1476-1486 http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201305006

    Li Shanshan, Li Zhiwei, Hu Jun, et al. Investigation of the Seasonal Oscillation of the Permafrost over Qinghai-Tibet Plateau with SBAS-InSAR Algorithm[J]. Chinese Journal of Geophysics, 2013, 56(5):1476-1486 http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201305006
    [15] 张金芝, 黄海军, 毕海波.SBAS时序分析技术监测现代黄河三角洲地面沉降[J].武汉大学学报·信息科学版, 2016, 41(2):242-248 http://ch.whu.edu.cn/CN/abstract/abstract3462.shtml

    Zhang Jinzhi, Huang Haijun, Bi Haibo. Monitoring Ground Subsidence in the Modern Yellow River Dleta Based on SBAS Time-Series Analysis[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2):242-248 http://ch.whu.edu.cn/CN/abstract/abstract3462.shtml
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(1640) PDF downloads(340) Cited by()

Related
Proportional views

Monitoring and Analysis of Surface Subsidence in Mining Area Based on SBAS-InSAR

doi: 10.13203/j.whugis20160566
Funds:

The National Natural Science Foundation of China 41272389

the Priority Academic Program Development of Jiangsu Higher Education Institutions SZBF2011-6-B35

Abstract: DInSAR technique is easily influenced by decorrelation of time and space and atmosphere delay, SBAS(small baseline subset technique) was applied to process 13 scene of TerraSAR-X data. The residual DEM error, atmospheric delay error and orbit error are estimated and removed. The maximum subsidence rates of 2310 and 1301 working faces were 40 mm/a and 50 mm/a respectively by analyzing the subsidence rate of the coal mine area from 2012 to 2013. It found that the land subsidence of 2306, 2308, 2310 working faces is not obvious before November 15, 2012 by analyzing the timing cumulative subsidence map. Three candidate points of slowly decorrelation filter phase in the 2310 and the 1301 working faces were extracted respectively to be analyzed and we found that the relationship between sedimentation value and time was linear, moreover, the earlier the mining time was, the more the linear variation of the sedimentation characteristics was. Cumulative settlement values obtained by the SBAS and DInSAR were compared and analyzed and turned out that the difference between the two methods was less than 5 mm. The time sequence subsidences of several points in the trending and orientation of 2310 working face were selected and extracted, the surface subsidence of study area in different time period was quantitative analysis by analyzing the displacements of these points. Experiments show that SBAS-InSAR technology has a good application prospect in the monitoring and analysis of surface subsidence in mining area.

LI Da, DENG Kazhong, GAO Xiaoxiong, NIU Haipeng. Monitoring and Analysis of Surface Subsidence in Mining Area Based on SBAS-InSAR[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1531-1537. doi: 10.13203/j.whugis20160566
Citation: LI Da, DENG Kazhong, GAO Xiaoxiong, NIU Haipeng. Monitoring and Analysis of Surface Subsidence in Mining Area Based on SBAS-InSAR[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1531-1537. doi: 10.13203/j.whugis20160566
  • 煤炭是我国的主体能源,长期占据着我国能源消费结构中65%以上,煤炭资源合理开发和利用对于中国经济发展和生态环境具有重要意义[1]。在地下煤炭资源被采出后,开采区周围原始应力平衡被打破,引起应力重新分布和覆岩移动,随着采空区扩大到一定的范围后,岩层移动就会向上波及地表,使地表发生沉降和变形[2]。在过去的几十年中,由于煤炭资源高强度、大面积的开采,使得开采所引起的地表沉陷及生态环境灾害问题日益突出,因此对于矿区开采沉陷的监测与分析具有重要的研究意义[3]

    雷达差分干涉测量技术(differential interferometry synthetic aperture radar, DInSAR)是利用对同一地区观测的多景SAR影像进行相干处理,获取高精度、高空间微小形变的信息技术[4]。DInSAR技术经过十几年的发展,已经在城市地面沉降监测、山体滑坡监测及矿区沉降监测等方面有了广泛的应用研究[5-7]。文献[8]探索DInSAR技术在矿区开采沉陷监测中的应用,证明DInSAR技术监测矿区地面沉降的可行性,但时空基线、大气效应等误差影响了DInSAR技术的测量精度[9],而小基线集技术(small baseline subset, SBAS)可以减轻时空失相关、大气延迟的影响,应用数量有限的影像得到毫米级的时序沉降量[10-12]。文献[13-15]已经利用SBAS技术对城市地面、高原冻土和长三角洲进行沉降监测研究,并取得较好的实验结果,但SBAS技术在煤矿地区的研究应用较少。煤矿地区地表散射特性不稳定,容易造成失相干,很难用传统的DInSAR方法实现长时间的形变监测,而用SBAS技术可以实现对矿区的长时间序列的形变监测。本文应用SBAS技术对13景TerraSAR-X数据进行处理,获得并分析了研究区域的沉降速率和时序累计沉降值,得出SBAS技术在矿区地表沉降监测与分析方面具有良好的应用前景。

  • 实验区域位于陕西省榆林市某矿区西北部,内有蒜皮滩、吕汗界等村庄,地表主要由沙漠和少量植被组成。实验区域包含4个工作面,编号分别为2310、2308、2306、1301(由于井下资料不全,为方便后续分析,本文将东边工作面编号为1301)。1301、2306、2308、2310工作面彼此相邻,采用综合机械化长壁垮落法开采,采深170 m,采厚2.5~3 m,各工作面间距40 m;1301工作面长965 m,宽240 m,开采时间为2012-04-2012-09;2306工作面长1 100 m,宽205 m,开采时间为2010-02-2010-10;2308工作面长1 126 m,宽245 m,开采时间为2010-12-2011-05;2310工作面长1 120 m,宽180 m,开采时间为2011-06-2012-04。根据开采沉陷规律,采深在100~200 m时,地表点移动的总时间为1~2 a,由此可知,1301工作面和2310工作面的地表会继续发生沉降。

  • 实验选用13景TerraSAR-X数据,影像时间跨度为2012-10-02-2013-03-05,数据为X波段,波长是3.1 cm, 影像的中心入射角为30.66°,方位向和距离向的分辨率分别为0.8 m和0.9 m,实验裁切影像大小为距离向为1 440像素,方位向为2 000像素,不进行多视处理,差分干涉测量中所用的DEM是30 m分辨率的SRTM数据。

    实验基于gamma软件实现DInSAR处理,基于StaMPS/MTI软件实现SBAS处理。DInSAR处理主要包括影像配准、去平地效应、地理编码、DEM相位差分等步骤。StaMPS/MTI首先根据幅度信息筛选出经过斜距向谱滤波后相位在短时间内失相干现象表现较为缓慢的SDFP(slowly decorrelation filter phase)候选点,然后根据SDFP候选点相位信息进行迭代运算,从中筛选出最终的SDFP。由于SDFP的精化选取是根据干涉相位进行的,干涉对的相干质量对SDFP的选取具有较大影响。StaMPS/MTI软件在组合干涉对时认为两景SAR影像的相干质量仅仅与时间/空间基线有关,并用简单的线性函数进行描述,而现实中影响相干质量的因素众多。为降低噪声等因素影响,在提取相干点目标之前需要检查每个干涉对的相干质量,去除相干性差的干涉对。

    基于13景影像,分别设置时间基线和垂直基线阈值为90 a和800 m,去掉其中相干性差的干涉对,最终挑选出33个干涉对用于时序分析,其中最大时间基线为88 a,最大空间基线为264 m,时间基线和空间基线详细信息见图 1。StaMPS/MTI处理首先设置振幅离差阈值为0.6,初步选取33万个SDFP点,然后根据相关系数迭代计算出相位误差,再根据相位误差筛选出31万个SDFP点,去掉那些由于相邻像元误差错误估计的SDFP点,最终筛选出14万个稳定的SDFP点,对这些SDFP点进行三维相位解缠,并在时间域和空间域上进行高通、低通滤波处理,最后分离出沉降相位、大气延迟相位、DEM误差相位。

    Figure 1.  The Baseline Map of Time and Space

  • 通过上述数据处理后,获得2012-10-02-2013-03-05期间榆林某矿的雷达视线方向年平均沉降速率,根据公式Δhr/cosθr为卫星视线方向沉降,θ为入射角,Δh为垂直沉降值),将雷达视线方向的沉降速率换算到垂直方向。从图 2可以看出研究区域的房屋及道路等建筑物上面选取到较多的SDFP点,同时在4个工作面上也选取到大量的SDFP点,而其他时序方法很难在植被和沙漠地区选取到密集的SDFP点。结果显示该矿区4个工作面都有沉降,1301工作面沉降速率最大,沉降速率为30~50 mm/a,这是因为该工作面刚结束开采工作。其他3个工作面也均有沉降,2310工作面沉降速率为10~40 mm/a,2308和2306两个工作面沉降速率均为10~25 mm/a。

    Figure 2.  Vertical Subsidence Rate of the Study Area

  • 图 3是以2012-10-02为起始时间,其他时间相对起始时间的时序累计沉降值。从图 3中可以看出,在2012年10月-11月期间,1301工作面有5~8 mm的沉降量,其他3个工作面没有明显的沉降发生;从2012-11-15开始,2310工作面开始出现沉降值,并随着时间推移,沉降值不断变大,沉降范围也不断变大,到2013-03-05沉降值达到20 mm,说明2310工作面并没有达到稳定,沉降还在继续,1301工作面的累计沉降值达到30 mm,以后还会不断增大。

    Figure 3.  The Timing Cumulative Subsidence of the Study Area

  • 为了分析研究区域的沉降性质,在2310工作面和1301工作面分别以100 m为间隔提取出6个观测点的时序沉降值,位置如图 4(b)所示,利用简单的线性拟合模型拟合出下沉值和时间的关系见图 5。从图 5可以看出,下沉值和时间呈线性关系,并发现开采时间越早的区域,对应SDFP点的时序沉降值越符合线性关系,如3号SDFP点。

    Figure 4.  The Cumulative Subsidence of DInSAR and SBAS

    Figure 5.  The Settlement Characteristics of the Study Area

  • 由于研究区域没有实测值,为了评估SBAS结果的可靠性,对13景TerraSAR影像进行DInSAR处理,组成12个干涉对,对其进行影像配准、地理编码、去平地效应、DEM差分、相位解缠等处理,最终获得12个差分干涉图,在ArcGIS中将其进行累加处理,获得DInSAR处理的累计沉降图,如图 4(a)所示。在DInSAR、SBAS获得的累计沉降图走向方向提取观测点的沉降值,并去掉受到植被和噪声影响的观测点,采用折线图进行分析。

  • 图 6中可见,SBAS方法和DInSAR方法得到的累计沉降值在变化趋势上大体相同。2310工作面走向方向沉降值是一个由小变大再到由大变小的过程,两种方法在监测量级方面也较为接近,SBAS方法监测到最大沉降值是20 mm,DInSAR方法监测到最大沉降值是23 mm。为了更准确比较两种方法结果,将两种方法的结果进行作差处理,差值统计结果如图 7所示。虽然没有和实测值进行比较,但基于以往DInSAR方法的监测精度,可认为SBAS方法得到的结果是可靠的。

    Figure 6.  The Settlement of DInSAR and SBAS

    Figure 7.  Difference Statistics of SBAS and DInSAR

  • 图 4(b)是2012-10-02-2013-03-05期间研究区域的累计沉降值,1301工作面累计沉降值达到18~30 mm,2310工作面累计沉降值也达到10~20 mm。为了量化分析2310工作面的时序累计沉降值,在走向方向和倾向方向分别提取一系列点进行分析,去掉受植被和噪声影响的观测点,将走向和倾向方向的观测点画成折线图,如图 8图 9所示。

    Figure 8.  Timing Cumulative Subsidence of Trending

    Figure 9.  Timing Cumulative Subsidence of Orientation

    图 8可知,随着时间的增加,2310工作面的沉降值不断变大,大的沉降区域沉降值由开始的3 mm,经过5个月时间沉降值增大到20 mm;小的沉降区域沉降值由开始的2 mm增加到12 mm。观察累计沉降变化曲线,可以看到2310工作面有一个快速下沉盆地,并以40 mm/a的速度沉降,其他下沉缓慢区域则以20 mm/a的速度沉降,这是因为2310工作面是由北向南开采,工作面南边区域比北边区域活跃,下沉速度较大,相同时间内累计沉降值也大,这一点在1301工作面也有很好验证,由图 4(a)可以看出1301工作面最南端区域累计沉降值比北边区域大。

    图 9也可以看出,2310工作面在倾向方向上表现出下沉盆地的特性,累计沉降值是先增大再减小的过程,下沉盆地中心沉降值从开始的1.5 mm以40 mm/a的平均速度增加到22 mm,说明2310工作面并没有稳定,未来沉降值还会不断地增大。

  • 针对传统的DInSAR方法时空失相关等问题,利用SABS方法对13景TerraSAR影像进行处理,得到研究区域的年平均沉降速率、时序累计沉降值等高空间分辨率的时间序列形变信息。通过比较分析SBAS和DInSAR两种方法获得的累计沉降值,表明两种方法监测结果接近,SBAS方法获得结果是可靠的。研究表明,2310和1301工作面时序沉降是线性沉降,最大沉降速度分别为40 mm/a和50 mm/a;在累计沉降图的走向和倾向方向提取一些观测点,通过这些观测点分析了2310工作面的时序沉降变化,观察到该工作面开采时间晚的区域比开采时间早的区域沉降速度大的情况。通过以上分析表明,SBAS技术可以为矿区地表的变形监测与分析提供新的监测手段。

Reference (15)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return