ZHANG Hongming, WANG Meng, YANG Qinke, JIN Bei, WANG Meili, LI Rui. Effect of Slope Cutoff in Extraction of Distributed Soil Erosion Slope Length[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1753-1760. DOI: 10.13203/j.whugis20160491
Citation: ZHANG Hongming, WANG Meng, YANG Qinke, JIN Bei, WANG Meili, LI Rui. Effect of Slope Cutoff in Extraction of Distributed Soil Erosion Slope Length[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1753-1760. DOI: 10.13203/j.whugis20160491

Effect of Slope Cutoff in Extraction of Distributed Soil Erosion Slope Length

Funds: 

The National Natural Science Foundation of China 41771315

The National Natural Science Foundation of China 41301283

The National Natural Science Foundation of China 41371274

The National Natural Science Foundation of China 41301507

the National Key Research and Development Program of China 2017YFC0403203

EU Horizon 2020 Research and Innovation Programme 635750

Funded by State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau A314021402-1702

the Natural Science Foundation of Shanxi Province 2015JM4142

the Natural Science Foundation of Shanxi Province 2016JM6038

the Fundamental Research Funds for the Central Universities 2452015060

More Information
  • Author Bio:

    ZHANG Hongming, PhD, professor, specializes in spatial data management, regional soil erosion evaluation and digital terrain analysis.E-mail:zhm@nwsuaf.edu.cn

  • Corresponding author:

    YANG Qinke, PhD, professor.E-mail:qkyang@nwu.edu.cn

  • Received Date: August 24, 2017
  • Published Date: November 04, 2018
  • Topography is an important factor affecting soil erosion.Distributed soil erosion slope length is an important parameter of topographic factor.The slope length agree with the process of soil erosion, is calculated with the cutoff considered.Slope length, influenced by the terrain, especially the slope changes affects the extraction results are in urgent need of research.In this paper, the mathematical surface and the digital elevation model of the Xiannangou catchment in the Loess Plateau are used as the data source.The length of the slope is extracted by using the LS_TOOL method, and the slope length cutoff results caused by the change in slope are compared and analyzed by principal component analysis.The results show that the greater the down slop decrease, the more obvious the slope cutoff effect.The cutoff factor R1 and cutoff factor R2 have positively correlated with the maximum slope length and averages slope length; as there are more steep slopes and channels in the Loess Plateau region, the influence of R1 is less than that of R2.When the slope setting of the slope is larger than that of R1> 0.7 and R2> 0.5, the change of slope length is obvious.It is suggested that the slope cutoff setting of the slope length of the Loess Plateau region should be R1=0.7 and R2=0.5.
  • [1]
    杨勤科, 郭明航, 李智广, 等.全国土壤侵蚀地形因子提取与初步分析[J].中国水土保持, 2013(10):17-21 doi: 10.3969/j.issn.1000-0941.2013.10.008

    Yang Qinke, Guo Minghang, Li Zhiguang, et al. Extraction and Preliminary Analysis of Soil Erosion Terrain Factors in China[J].Soil and Water Conservation in China, 2013(10):17-21 doi: 10.3969/j.issn.1000-0941.2013.10.008
    [2]
    Hickey R. Slope Angle and Slope Length Solutions for GIS[J]. Cartography, 2000, 29(1):1-8 doi: 10.1080/00690805.2000.9714334
    [3]
    Renard K G. Predicting Soil Erosion by Water:A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE)[M]. USA:United States Department of Agriculture, 1997
    [4]
    Liu B Y, Zhang K L, Xie Y. An Empirical Soil Loss Equation[C]. The 12th International Soil Conservation Organization Conference, Beijing, China, 2002
    [5]
    Moore I D, Wilson J P. Length-Slope Factors for the Revised Universal Soil Loss Equation:Simplified Method of Estimation[J]. Journal of Soil & Water Conservation, 1992, 47(5):423-428 http://www.jswconline.org/content/47/5/423.abstract
    [6]
    Desmet P J J, Govers G. A GIS Procedure for the Automated Calculation of the USLE LS Factor on Topographically Complex Landscape Units[J].Journal of Soil and Water Conservation, 1996, 51(5):427-433 http://www.jswconline.org/content/51/5/427.abstract
    [7]
    Winchell M F, Jackson S H, Wadley A M, et al. Extension and Validation of a Geographic Information System-Based Method for Calculating the Revised Universal Soil Loss Equation Length-Slop Factor for Erosion Risk Assessments in Large Watersheds[J]. Journal of Soil and Water Conservation, 2008, 63(3):105-111 doi: 10.2489/jswc.63.3.105
    [8]
    晋蓓, 刘学军, 甄艳, 等. ArcGIS环境下DEM的坡长计算与误差分析[J].地球信息科学学报, 2010, 12(5):700-706 http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201005016

    Jin Bei, Liu Xuejun, Zhen Yan, et al. Analysis of Slope Length Extracted from Grid-Based Digital Elevation Model in ArcGIS Environment[J].Journal of Geo-Information Science, 2010, 12(5):700-706 http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201005016
    [9]
    张照录.基于DEM通用土壤流失方程地形因子的算法设计与优化[J].水土保持研究, 2007, 14(3):203-205 doi: 10.3969/j.issn.1005-3409.2007.03.063

    Zhang Zhaolu. The Algorithm Design and Optimization for Topographic Factors of Universal Soil Loss Equation Based on DEM[J].Research of Soil and Water Conservation, 2007, 14(3):203-205 doi: 10.3969/j.issn.1005-3409.2007.03.063
    [10]
    Van Remortel R D, Maichle R W, Hickey R J. Computing the LS Factor for the Revised Universal Soil Loss Equation Through Array-Based Slope Processing of Digital Elevation Data Using a C++Exe-cutable[J]. Computers & Geosciences, 2004, 30(9):1043-1053
    [11]
    罗红, 马友鑫, 刘文俊, 等采用最大溯源径流路径法估算RUSLE模型中地形因子探讨[J].应用生态学报, 2010, 21(5):1185-1189 http://d.old.wanfangdata.com.cn/Periodical/yystxb201005015

    Luo Hong, Ma Youxin, Liu Wenjun, et al. Estimation of Topographical Factors in Revised Universal Soil Loss Model Based on Maximum up Stream Flow Path[J]. Chinese Journal of Applied Ecology, 2010, 21(5):1185-1189 http://d.old.wanfangdata.com.cn/Periodical/yystxb201005015
    [12]
    张宏鸣, 杨勤科, 李锐, 等.流域分布式侵蚀学坡长的估算方法研究[J].水利学报, 2012, 43(4):437-444 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201201422795

    Zhang Hongming, Yang Qinke, Li Rui, et al. Research on the Estimation of Slope Length in Distri-buted Watershed Erosion[J]. Journal of Hydraulic Engineering, 2012, 43(4):437-444 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201201422795
    [13]
    Zhang H, Yang Q, Li R, et al. Extension of a GIS Procedure for Calculating the RUSLE Equation LS Factor[J]. Computers & Geosciences, 2013, 52(1):177-188 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0229306466
    [14]
    Yang X H. Digital Mapping of RUSLE Slope Length and Steepness Factor Across New South Wales, Australia[J]. Soil Research, 2015, 53(2):216-225 http://www.publish.csiro.au/SR/ExportCitation/SR14208
    [15]
    Zhang H, Yao Z, Yang Q, et al. An Integrated Algorithm to Evaluate Flow Direction and Flow Accumulation in Flat Regions of Hydrologically Corrected DEMs[J]. Catena, 2017, 151:174-181 doi: 10.1016/j.catena.2016.12.009
    [16]
    刘学军, 晋蓓, 胡加佩, 等.格网DEM上径流长度计算误差的定量分析[J].武汉大学学报·信息科学版, 2012, 37(7):757-761, 779 http://ch.whu.edu.cn/CN/abstract/abstract247.shtml

    Liu Xuejun, Jin Bei, Hu Jiapei, et al. Quantitative Analysis of Error in Extracting Flow Length from Grid-Based Digital Elevation Model[J].Geomatics and Information Science of Wuhan University, 2012, 37(7):757-761, 779 http://ch.whu.edu.cn/CN/abstract/abstract247.shtml
    [17]
    Orlandini S, Moretti G, Gavioli A. Analytical Basis for Determining Slope Lines in Grid Digital Elevation Models[J]. Water Resources Research, 2014, 50(1):526-539 doi: 10.1002/wrcr.v50.1
    [18]
    Zhang H, Wei J, Yang Q, et al. An Improved Method for Calculating Slope Length (λ) and the LS Parameters of the Revised Universal Soil Loss Equation for Large Watersheds[J]. Geoderma, 2017, 308:36-45 doi: 10.1016/j.geoderma.2017.08.006
    [19]
    McCool D K, Brown L C, Foster G R, et al. Revised Slope Steepness Factor for the Universal Soil Loss Equation[J]. Transactions of the American Society of Agricultural Engineers, 1987, 30(5):1387-1396 doi: 10.13031/2013.30576
    [20]
    国家测绘局. CH/T 1015.1-2007基础地理信息数字产品1: 100001: 50000生产技术规程第1部分: 数字线划图(DLG)[S].北京: 测绘出版社, 2007

    The State Bureau of Surveying and Mapping. CH/T 1015.1-2007 Technical Rules for Producing Digital Products of 1: 100001: 50000 Fundamental Geographic Information Part 1: Dingital Line Graphs(DLG)[S]. Beijing: Surveying and Mapping Press, 2007
    [21]
    Lepš J, Šmilauer P. Multivariate Analysis of Ecological Data Using Canoco 5[M]. 2nd ed. Cambridge:Cambridge University Press, 2014
    [22]
    张宏鸣, 宋泽鲁, 杨江涛, 等. DEM超分辨率重构对梯田坡度提取的影响研究[J].农业机械学报, 2017, 48(1):112-118 http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201701015

    Zhang Hongming, Song Zelu, Yang Jiangtao, et al.Influence of DEM Super-Resolution Reconstruction on Terraced Field Slope Extraction[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(1):112-118 http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201701015
  • Related Articles

    [1]LONG En, LÜ Shouye, QU Xiaofei, MENG Gang, LAI Guangling, YANG Yuke. Height Inversion Model of Oil Tank Using Satellite Imagery with Same Name Arc Distance[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3): 411-418. DOI: 10.13203/j.whugis20210239
    [2]LÜ Pinji, LI Zhengyuan, SUN Lingli, LIN Jun, TANG Lei, NI Yipeng. Analysis of Impact of the Tonga Volcanic Eruption in 2022 on the Strain Observation of Chinese Mainland[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 927-933. DOI: 10.13203/j.whugis20220174
    [3]LEI Xiangxu, SANG Jizhang, LI Zhenwei, CHEN Junyu, DU Jianli, HE Donglei. Association of Very-Short-Arc Angles Data for LEO Space Objects[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1526-1532. DOI: 10.13203/j.whugis20180386
    [4]LOU Yidong, YAO Xiuguang, LIU Yang, ZHENG Fu. Impact of Ambiguity Resolution and Arc Length on Regional Precise Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 249-254. DOI: 10.13203/j.whugis20140201
    [5]LIU Xiaoxia, JIANG Zaisen, WU Yanqiang. The Applicability of Kriging Interpolation Method in GPSVelocity Gridding and Strain Calculating[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 457-461. DOI: 10.13203/j.whugis20120086
    [6]WU Yanqiang, JIANG Zaisen, YANG Guohua, FANG Ying. Application and Method of GPS Strain Calculating in Whole Mode Using Multi-Surface Function[J]. Geomatics and Information Science of Wuhan University, 2009, 34(9): 1085-1089.
    [7]DING Kaihua, XU Cajjun. Current Crustal Strain Field in the Sichuan-Yunnan Area by Joint Inversion of GPS and Seismic Moment Tensor[J]. Geomatics and Information Science of Wuhan University, 2009, 34(3): 265-268.
    [8]ZHU Xinhui, SUN Fuping, QIN Yong. Establishment of Plate Motion Model by the Integrated Data of GPS and VLBI[J]. Geomatics and Information Science of Wuhan University, 2005, 30(7): 604-608.
    [9]DU Ruilin, QIAO Xuejun, YANG Shaomin, WANG Qi. Results of the Crustal Deformation by GPS Survey and Horizontal Strain Rate Fields in the Three Gorges Area[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 768-771.
    [10]Zhang Zuxun, Bao Xiuzhi, Cao Hui. Arc Spline and Arclet Processing[J]. Geomatics and Information Science of Wuhan University, 1994, 19(3): 189-193.
  • Cited by

    Periodical cited type(5)

    1. 黄少华,万永革,冯淦,李枭,关兆萱. 2022年9月17日中国台湾地震序列的触发机制及其动力学成因. 地质力学学报. 2023(05): 674-684 .
    2. 李之诺,卢佳遇,高锐,陈致同. 斜向聚合及弧后伸展作用对台湾北部-琉球地区的构造影响——砂箱模型实验的启示. 地球学报. 2022(05): 609-615 .
    3. 李建涛,刚慧龙. 基于ITRF14框架的URCORS坐标分析. 工程勘察. 2022(10): 62-66 .
    4. 高源,瞿伟,张勤,王庆良,郝明. GNSS揭示的汾渭盆地及周缘现今地壳运动与应变差异. 武汉大学学报(信息科学版). 2021(07): 1063-1070+1113 .
    5. 徐良叶,邵德盛,吴学群,牛甜. 最小二乘配置的云南区域形变与应变特征研究. 测绘科学. 2021(12): 16-23+74 .

    Other cited types(4)

Catalog

    Article views (1730) PDF downloads (183) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return