GAO Chaoqun, YANG Dongkai, QIU Xuejing, ZHU Yunlong. Constructing LEO-R Ocean Remote Sensing Constellation Using BeiDou System[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1342-1348. DOI: 10.13203/j.whugis20160440
Citation: GAO Chaoqun, YANG Dongkai, QIU Xuejing, ZHU Yunlong. Constructing LEO-R Ocean Remote Sensing Constellation Using BeiDou System[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1342-1348. DOI: 10.13203/j.whugis20160440

Constructing LEO-R Ocean Remote Sensing Constellation Using BeiDou System

Funds: 

The Open National Foundation of Beihang and Jinhua Research BARI1702

More Information
  • Author Bio:

    GAO Chaoqun, PhD, specializes in GNSS-R remote sensing and object detection. E-mail:706465882@qq.com

  • Corresponding author:

    ZHU Yunlong, PhD, lecturer. E-mail:inca_zyl@126.com

  • Received Date: September 29, 2016
  • Published Date: September 04, 2018
  • BeiDou is developed by China independently, the distribution and number of its reflection events have special advantages, which is the important indicator of LEO-R(low earth orbit-reflection)constellation. By using the Walker architecture which has the advantage of the uniformity and stability to design LEO-R constellation, it can realize the global ocean remote sensing based on BeiDou reflected signals. The geometric relation between the constellation and BeiDou is analyzed and the judgment condition of the reflection events is also derived. The impacts of constellation parameters on the number and distribution of the BeiDou reflection events are quantitatively analyzed by proposing mark-traverse algorithm, at the same time, the chosed simulation scene is 36 hours Nepartak typhoon. The results show that the percentage of constellation coverage time is 97.619 73% and the maximum revisit time is 404.511 s, which validates the constellation good performance on the global remote sensing.
  • [1]
    Martin-Neira M. A Passive Reflectometry and Interferometry System (PARIS):Application to Ocean Altimetry[J]. ESA Journal, 1993, 17:331-335 http://ci.nii.ac.jp/naid/80007529842
    [2]
    Lowe S T, Zuffada C, LaBrecque J L, et al. An Ocean-Altimetry Measurement Using Reflected GPS Signals Observed from a Low-Altitude Aircraft[C]. IEEE International Geoscience and Remote Sensing Symposium(IGARSS), Honolulu, Hawaii, USA, 2000
    [3]
    Cardellach E, Ruffini G. Mediterranean Balloon Experiment:Ocean Wind Speed Sensing from the Stratosphere Using GPS Reflections[J]. Remote Sensing of Environment, 2003, 88(3):351-362 doi: 10.1016/S0034-4257(03)00176-7
    [4]
    Thompson D R, Elfouhaily T M. An Improved Geometrical Optics Model for Bistatic GPS Scattering from the Ocean Surface[J].IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(12):2810-2821 doi: 10.1109/TGRS.2005.857895
    [5]
    Zhang X, Wang X, Shao L. First Results of GNSS-R Coastal Experiment in China[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Barcelona, Spain, 2007
    [6]
    王鑫, 孙强, 张训械, 等.中国首次岸基GNSS-R海洋遥感实验[J].科学通报, 2008(5):589-592 doi: 10.3321/j.issn:0023-074X.2008.05.015

    Wang Xin, Sun Qiang, Zhang Xunxie, et al. The First GNSS-R Ocean Remote Sensing Experiment on the China Shore[J]. Chinese Science Bulletin, 2008(5):589-592 doi: 10.3321/j.issn:0023-074X.2008.05.015
    [7]
    杨东凯.基于GPS卫星信号的海面风场遥感方法研究与实现[J].遥感信息, 2006(3):11-13 http://d.old.wanfangdata.com.cn/Periodical/ygxx200603004

    Yang Dongkai. Research and Implementation of Sea Surface Wind Field Remote Sensing Method Based on GPS Satellite Signal[J]. Remote Sensing Information, 2006(3):11-13 http://d.old.wanfangdata.com.cn/Periodical/ygxx200603004
    [8]
    Ruf C, Unwin M, Dickinson J, et al. CYGNSS:Enabling the Future of Hurricane Prediction Remote Sensing Satellites[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(2):52-67 doi: 10.1109/MGRS.2013.2260911
    [9]
    Ruf C S, Gleason S, Jelenak Z, et al. The CYGNSS Nano-satellite Sonstellation Hurricane Mission[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 2012
    [10]
    Rose R, Ruf C, Scherrer J, et al. The CYGNSS Flight Segment: Mainstream Science on a Micro-budge[C]. Aerospace Conference, Shanghai, China, 2015
    [11]
    Rose D, Vincent M, Rose R, et al. The CYGNSS Ground Segment: Innovative Mission Operations Concepts to Support a Micro-Satellite Constellation[C]. Aerospace Conference, Boston, Massachusetts, USA, 2013
    [12]
    Shoer J, Singh L, Henderson T. Conical Scanning Approach for Sun Pointing on the CYGNSS Microsatellite[C]. Aerospace Conference, Shanghai, China, 2015
    [13]
    Unwin M, Duncan S, Jales P, et al. Implementing GNSS-Reflectometry in Space on the TechDemoSat-1 Mission[C]. ION GNSS, Florida, USA, 2014
    [14]
    Dickinson J R, Alvarez J L, Mcdaniel L T, et al. CYGNSS Command and Data Subsystem and Electrical Power Subsystem Phase A and B Developments[C]. Aerospace Conference, Montana, USA, 2014
    [15]
    Fritz M, Shoer J. Attitude Determination and Control System Design for the CYGNSS Microsatellite[C]. Aerospace Conference, Shanghai, China, 2015
    [16]
    O'Brien A, Gleason S, Johnson J, et al. The End-to-End Simulator for the Cyclone GNSS Mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 3(2):306-315 http://clasp-research.engin.umich.edu/missions/cygnss/reference/148-0123_CYGNSS_E2ES_EM.pdf
    [17]
    Said F, Soisuvarn S. Estimation of Maximum Hurricane Wind Speed Using Simulated CYGNSS Mea-surements[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 2015
    [18]
    Gleason S, Ruf C S, Clarizia M P, et al. Calibration and Unwrapping of the Normalized Scattering Cross Section for the Cyclone Global Navigation Satellite System[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(5):2495-2509 doi: 10.1109/TGRS.2015.2502245
    [19]
    Clarizia M P, Ruf C S. Wind Speed Retrieval Algorithm for the Cyclone Global Navigation Satellite System (CYGNSS) Mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8):4419-4432 doi: 10.1109/TGRS.2016.2541343
    [20]
    Gleason S, Ruf C. Overview of the Delay Doppler Mapping Instrument (DDMI) for the Cyclone Glo-bal Navigation Satellite Systems Mission (CYGNSS)[C]. IEEE MTT-S International Microwave Symposium, Phoenix, Arizona, USA, 2015
    [21]
    杨东凯, 王峰, 李伟强, 等.基于低轨卫星的北斗反射事件仿真分析[J].电波科学学报, 2015, 3(6):409-417 http://d.old.wanfangdata.com.cn/Periodical/dbkxxb201503001

    Yang Dongkai, Wang Feng, Li Weiqiang, et al. Simulation Analysis of BeiDou Reflection Events Based on LEO Satellites[J]. Chinese Journal of Radio Science, 2015, 3(6):409-417 http://d.old.wanfangdata.com.cn/Periodical/dbkxxb201503001
    [22]
    韩英, 符养.利用卫星星座对GNSS-R海洋遥感时空特性进行研究[J].武汉大学学报·信息科学版, 2011, 36(2):208-211 http://ch.whu.edu.cn/CN/Y2011/V36/I2/208

    Han Ying, Fu Yang. Spatial and Temporal Characteristics of GNSS-R Ocean Remote Sensing Satellite Constellation[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2):208-211 http://ch.whu.edu.cn/CN/Y2011/V36/I2/208
    [23]
    毛悦, 孙付平.利用Walker星座实现全球导航卫星星座设计[J].测绘科学技术学报, 2006, 23(2):153-156 doi: 10.3969/j.issn.1673-6338.2006.02.018

    Mao Yue, Sun Fuping. Global Navigation Satellite Constellation Design Using Walker Constellation[J]. Journal of Insititute of Surveying and Mapping, 2006, 23(2):153-156 doi: 10.3969/j.issn.1673-6338.2006.02.018
  • Related Articles

    [1]WU Yuhao, CAO Xuefeng. Hilbert Code Index Method for Spatiotemporal Data of Virtual Battlefield Environment[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1403-1411. DOI: 10.13203/j.whugis20190394
    [2]ZHU Jie, ZHANG Hongjun. Battlefield Geographic Environment Spatiotemporal Process Model Based on Simulation Event[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1367-1377, 1437. DOI: 10.13203/j.whugis20200175
    [3]ZHU Jie, YOU Xiong, XIA Qing, ZHANG Hongjun. Battlefield Geographic Environment Data Organizational Process Modeling Based on OOPN[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 1027-1034. DOI: 10.13203/j.whugis20180313
    [4]LI Zhaoxing, ZHAI Jingsheng, WU Fang. A Shape Similarity Assessment Method for Linear Feature Generalization[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1859-1864. DOI: 10.13203/j.whugis20180164
    [5]ZHU Jie, YOU Xiong, XIA Qing. Battlefield Environment Object Spatio-Temporal Data Organizing Model Based on Task-Process[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1739-1745. DOI: 10.13203/j.whugis20170074
    [6]LI Jian, ZHOU Qu, CHEN Xiaoling, TIAN Liqiao, LI Tingting. Spatial Scale Study on Quantitative Remote Sensing of Highly Dynamic Coastal/Inland Waters[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 937-942. DOI: 10.13203/j.whugis20160174
    [7]XU Junkui, WU Fang, LIU Wenfu, JIN Pengfei. Settlement Incremental Updating Quality Evaluation Basedon Neighborhood Spatial Similarity[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 476-480. DOI: 10.13203/j.whugis20120117
    [8]AN Xiaoya, SUN Qun, YU Bohu. Feature Matching from Network Data at Different Scales Based on Similarity Measure[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2): 224-228.
    [9]LIU Pengcheng, LUO Jing, AI Tinghua, LI Chang. Evaluation Model for Similarity Based on Curve Generalization[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 114-117.
    [10]Wang Qiao. Self-similarity Analysis of Cartographic Lines and the Automated Line Generalization[J]. Geomatics and Information Science of Wuhan University, 1995, 20(2): 123-128.
  • Cited by

    Periodical cited type(1)

    1. 李成名,武鹏达,印洁. 图数统一表达地理模型及自补偿方法. 测绘学报. 2017(10): 1688-1697 .

    Other cited types(4)

Catalog

    Article views (1629) PDF downloads (237) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return