SHI Bo, WANG Yunpeng, LI Taiheng. A Densification Method for Base Station Observation Data and its Application to Post Processing of Differential GNSS[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 651-657. DOI: 10.13203/j.whugis20160339
Citation: SHI Bo, WANG Yunpeng, LI Taiheng. A Densification Method for Base Station Observation Data and its Application to Post Processing of Differential GNSS[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 651-657. DOI: 10.13203/j.whugis20160339

A Densification Method for Base Station Observation Data and its Application to Post Processing of Differential GNSS

Funds: 

The National Key R & D Program of China 2016YFB0501700

The National Key R & D Program of China 2016YFB0501705

More Information
  • Author Bio:

    SHI Bo, PhD, associate professor, specializes in GNSS/INS integrated navigation and multi-sensor integration and data processing of vehicle-borne mobile mapping. E-mail: shibo@sdust.edu.cn

  • Received Date: March 18, 2017
  • Published Date: May 04, 2018
  • When the sampling rate of base station is lower than that of the rover station, it's impossible to obtain the coordinates of the rover station at all epochs with a conventional differential GNSS post-processing method. To solve this problem, a method based on PPP model is proposed to construct the virtual observation data of the non-sampling points of base station. The method separates the receiver clock error and tropospheric zenith wet delay from the observation error, and estimates them simultaneously with ionosphere ambiguity, after which the distance between the satellite and the station is obtained by base station's real coordinate. On this basis, the method calculates the residual errors of two adjacent epochs, by which the residual errors of non-sampling epochs are fitted. Eventually, the virtual observation data are generated by the non-sampling epochs' residual errors, the distance between the satellite and the station and the estimated errors. Error characteristic of the virtual observation data is maintained, especially the common error between the base station and the rover station; This method only densifies the data of the base station, which will not affect the rover station. The experiment results show that when base station works with a sampling interval within 30 s, the virtual observation data generated by this method are accordant with the real data. In 30s, 15s and 5s sampling intervals, the standard errors of virtual observations of pseudo-range are about 0.2, 0.1 and 0.05 meters, and virtual observations of carrier phase are about 1.2, 0.7 and 0.2 cycles, respectively; In the case of 30 s sampling interval, the positioning result obtained by this method can still meet the cm level accuracy requirements.
  • [1]
    Hofmann-Wellenhof B, Lichtenegger H, Wasle E. GNSS-global Navigation Satellite Systems:GPS, GLONASS, Galileo, and More[M]. New York:Springer Science & Business Media, 2007
    [2]
    肖国锐, 隋立芬, 宋倩, 等.流动站与参考站不同采样率GPS数据处理新方法[J].武汉大学学报·信息科学版, 2013, 38(10):1212-1215 http://ch.whu.edu.cn/CN/abstract/abstract2770.shtml

    Xiao Guorui, Sui Lifen, Song Qian, et al. A New Method for Processing the Rover and the Reference Stations GPS Data with Different Sampling Rates[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10):1212-1215 http://ch.whu.edu.cn/CN/abstract/abstract2770.shtml
    [3]
    Mader G L, Morrison M L. Using Interpolation and Extrapolation Techniques to Yield High Data Rates and Ionosphere Delay Estimates From Continuously Operating GPS Networks[C]. ION GPS, New York, 2002 http://www.ion.org/publications/abstract.cfm?articleID=2255
    [4]
    Schüler T. 10 Hz or 10 s?[J]. GPS Solutions, 2007, 11(2):77-83 doi: 10.1007/s10291-006-0034-8
    [5]
    Chang C C, Lee H Y. Performance of High Rate Interpolated Data Applied to GPS Kinematic Positioning[J]. Survey Review, 2011, 43(321):303-313 doi: 10.1179/003962611X13055561708425
    [6]
    El-Mowafy A. Alternative Postprocessing Relative Positioning Approach Based on Precise Point Positioning[J]. Journal of Surveying Engineering, 2009, 135(2):56-65 doi: 10.1061/(ASCE)0733-9453(2009)135:2(56)
    [7]
    黄观文, 涂锐, 张勤, 等.基于基准站改正信息的实时动态精密单点定位[J].大地测量与地球动力学, 2010, 30(6):135-139 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz201006029

    Huang Guanwen, Tu Rui, Zhang Qin, et al. A New Real-time Kinematic Precise Point Positioning Algorithm Based on Reference-station Corrections[J]. Journal of Geodesy and Geodynamics, 2010, 30(6):135-139 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz201006029
    [8]
    宋力杰, 柴洪洲, 刘先冬, 等.基准点无同步观测数据时流动点位置内插方法[J].测绘科学技术学报, 2010, 27(5):316-318 http://d.wanfangdata.com.cn/Periodical_chxyxb201005002.aspx

    Song Lijie, Chai Hongzhou, Liu Xiandong, et al. Interpolation Coordinates of Roving Station Without Reference Station Data[J]. Journal of Geomatics Science and Technology, 2010, 27(5):316-318 http://d.wanfangdata.com.cn/Periodical_chxyxb201005002.aspx
    [9]
    王海涛, 欧吉坤, 袁运斌, 等.流动站与参考站不同采样率GPS数据的处理策略[J].武汉大学学报·信息科学版, 2010, 35(2):164-167 http://ch.whu.edu.cn/CN/abstract/abstract843.shtml

    Wang Haitao, Ou Jikun, Yuan Yunbin, et al. Strategy for Processing the Rover and the Reference Stations GPS Data with Different Sampling Rates[J]. Geomatics and Information Science of Wuhan University, 2010, 35(2):164-167 http://ch.whu.edu.cn/CN/abstract/abstract843.shtml
    [10]
    杨剑, 王泽民, 王贵文, 等. GPS接收机钟跳的研究[J].大地测量与地球动力学, 2007, 27(3):123-127 https://www.wenkuxiazai.com/doc/1c9897d73186bceb19e8bb5b.html

    Yang Jian, Wang Zemin, Wang Guiwen, et al. On Clock Jumps of GPS Receiver[J]. Journal of Geodesy and Geodynamics, 2007, 27(3):123-127 https://www.wenkuxiazai.com/doc/1c9897d73186bceb19e8bb5b.html
    [11]
    李玮. GPS精密单点定位算法研究与软件实现[D]. 北京: 中国测绘科学研究院, 2010 http://cdmd.cnki.com.cn/Article/CDMD-86001-2010115503.htm

    LI Wei. GPS Precise Point Positioning Algorithms: Implementation and Performances[D]. Beijing: Chinese Academy of Surveying and Mapping, 2010 http://cdmd.cnki.com.cn/Article/CDMD-86001-2010115503.htm
    [12]
    何锡扬, 张小红, 李星星, 等. PPP估计天顶对流层延迟方法与结果分析[J].测绘信息与工程, 2010, 35(1):3-5 http://www.cqvip.com/QK/93326A/201001/32820689.html

    He Xiyang, Zhang Xiaohong, Li Xingxing, et al. Data Processing Strategy and Results Analysis of PPP Based Tropospheric Zenith Path Delay Estimation[J].Journal of Geomatics, 2010, 35(1):3-5 http://www.cqvip.com/QK/93326A/201001/32820689.html
    [13]
    Kouba J. A Guide to Using International GNSS Service (IGS) Products[EB/OL]. http://acc.igs.org/UsingIGSProductsVer21.pdf, 2010
    [14]
    Leick A, Rapoport L, Tatarnikov D. GPS Satellite Surveying[M]. New York:John Wiley & Sons, 2015
    [15]
    Kouba J, Héroux P. Precise Point Positioning Using IGS Orbit and Clock Products[J]. GPS solutions, 2001, 5(2):12-28 doi: 10.1007/PL00012883
    [16]
    张小红, 陈兴汉, 郭斐.高性能原子钟钟差建模及其在精密单点定位中的应用[J].测绘学报, 2015, 44(4):392-398 doi: 10.11947/j.AGCS.2015.20140287

    Zhang Xiaohong, Chen Xinghan, Guo Fei. High-performance Atomic Clock Modeling and Its Application in Precise Point Positioning[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(4):392-398 doi: 10.11947/j.AGCS.2015.20140287
  • Related Articles

    [1]KUANG Cuilin, ZHANG Jinsheng, LU Chenlong, YI Zhonghai. Single-and Dual-Frequency Mixed Mode GPS Network for Ground Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 692-697. DOI: 10.13203/j.whugis20140051
    [2]RUAN Rengui, WU Xianbing, FENG Laiping. Comparison of Observation Models and Ionospheric Elimination Approaches for Single Frequency Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1023-1028.
    [3]TU Rui, HUANG Guanwen, ZHANG Qin, WANG Li. A New Algorithm on Ionospheric Delay Correction for Single Frequency GPS Receivers[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 667-670.
    [4]ZOU Xuan, JIANG Weiping, WANG Shunxi, LI Tao. GNSS Data Processing with Mixed Single and Dual Frequency Receivers for High Accuracy Near Real-time Weather Monitoring[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 58-62.
    [5]LI Wei, CHENG Pengfei, BI Jinzhong. Regional Ionosphere Delays' Calibration and Accuracy Assessment Based on Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1200-1203.
    [6]TU Rui, HUANG Guanwen, ZHANG Qin, WANG Li. The Research of Dual Frequency Solution Method for Single Frequency Precise Point Positioning(PPP) Based on SEID Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1187-1190.
    [7]SHI Chuang, GU Shengfeng, GENG Changjiang, SONG Weiwei. High-Precision Single-Frequency Point Positioning with Randomness of Ionosphere Delay Correction in Consideration[J]. Geomatics and Information Science of Wuhan University, 2011, 36(7): 807-810.
    [8]SONG Weiwei, SHI Chuang, YAO Yibin, YE Shirong. Ionosphere Delay Processing Methods and Positioning Precision of Single Frequency Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 778-781.
    [9]ZHOU Zebo, SHEN Yunzhong, LI Bofeng. Analysis of GPS Dual-frequency Single Differenced Receiver Hardware Delay[J]. Geomatics and Information Science of Wuhan University, 2009, 34(6): 724-727.
    [10]ZHANG Xiaohong, LI Zhenghang, CAI Changsheng. Study on Regional Ionospheric Model Using Dual-frequency GPS Measurements[J]. Geomatics and Information Science of Wuhan University, 2001, 26(2): 140-143,159.
  • Cited by

    Periodical cited type(4)

    1. 李精忠,高阿骥,陈凯,张勇. 一种面向DEM多尺度表达的傅里叶能量谱模型. 武汉大学学报(信息科学版). 2022(11): 1938-1945 .
    2. 刘凤梅,黎义勇,肖攀,曾敏. 基于DEM的珠江三角洲地区水文特征模拟与分析. 现代测绘. 2021(01): 31-34 .
    3. 王荣,闫浩文,王中辉. 等高线自动综合研究热点及趋势可视化分析. 测绘科学. 2021(10): 167-176+193 .
    4. 何振芳,郭庆春,赵牡丹,刘加珍,张菊,李雪飞,梁志萌. 基于小波分析的复杂地貌区DEM自动综合研究. 地理与地理信息科学. 2019(04): 57-63 .

    Other cited types(3)

Catalog

    Article views (1647) PDF downloads (402) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return