ZHANG Mingda, YUE Peng, GAO Fan. A Geographic Model Integration Approach and Implementation Based on Coupling Components and Services[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1106-1112. DOI: 10.13203/j.whugis20160251
Citation: ZHANG Mingda, YUE Peng, GAO Fan. A Geographic Model Integration Approach and Implementation Based on Coupling Components and Services[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1106-1112. DOI: 10.13203/j.whugis20160251

A Geographic Model Integration Approach and Implementation Based on Coupling Components and Services

Funds: 

The National Natural Science Foundation of China 41722109

the National Key Research and Development Program of China 2017YFB0504103

the Scientific and Technological Innovation Project of the Yellow Crane Talents of Wuhan 2016

More Information
  • Author Bio:

    ZHANG Mingda, PhD, specializes in research on geospatial services and geographic model integration. E-mail:zhangmingda@whu.edu.cn

  • Corresponding author:

    YUE Peng, PhD, professor. E-mail:pyue@whu.edu.cn

  • Received Date: November 15, 2016
  • Published Date: July 04, 2018
  • Conventional geoprocessing workflow tools, such as ArcGIS ModelBuilder, focus on the integration of geoprocessing algorithms. The concept of the "Model Web" brings new challenges to these tools. On one hand, existing geoprocessing tools need to adapt to the Web environment to support the plug-in-and-play of distributed geoprocessing services. On the other hand, these services need to couple complex models to support time-step computation. This paper introduces a new method to publish model as service based on WebSocket protocol, and also introduces a workflow-based integrated modelling approach to couple models and services. It integrates OGC services, WebSocket services and OpenMI models, which brings some new features including logical consistency, physical separation, and controllable execution. In this way, traditional geoprocessing workflow tools are extended as tools for integrated modelling. A specific use case demonstrates the applicability of the approach.
  • [1]
    van Evert F, Holzworth D, Muetzelfeldt R, et al. Convergence in Integrated Modeling Frameworks[C]. MODSIM 2005 International Congress on Modeling and Simulation, Melbourne, Australia, 2005
    [2]
    Laniak G F, Olchin G, Goodall J, et al. Integrated Environmental Modeling:A Vision and Roadmap for the Future[J]. Environmental Modelling & Software, 2013, 39:3-23 http://dl.acm.org/citation.cfm?id=2400753.2401133
    [3]
    Nativi S, Mazzetti P, Geller G N.Environmental Model Access and Interoperability:The GEO Model Web Initiative[J]. Environmental Modelling & Software, 2013, 39:214-228 http://dl.acm.org/citation.cfm?id=2400753.2401147
    [4]
    乐鹏.网络地理信息系统和服务[M].武汉:武汉大学出版社, 2011

    Yue Peng. Web Geographic Information Systems and Services[M]. Wuhan:Wuhan University Press, 2011
    [5]
    杜云艳, 冯文娟, 何亚文, 等.网络环境下的地理信息服务集成研究[J].武汉大学学报·信息科学版, 2010, 35(3):347-349, 364 http://ch.whu.edu.cn/CN/abstract/abstract893.shtml

    Du Yunyan, Feng Wenjuan, He Yawen, et al. Geographic Information Services Integration with Web Services[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3):347-349, 364 http://ch.whu.edu.cn/CN/abstract/abstract893.shtml
    [6]
    Goodall J L, Saint K D, Ercan M B, et al. Coupling Climate and Hydrological Models:Interoperability Through Web Services[J]. Environmental Modelling & Software, 2013, 46:250-259 http://jwcc.iwaponline.com/content/early/2017/08/07/wcc.2017.010
    [7]
    Castronova A M, Goodall J L, Elag M M. Models as Web Services Using the Open Geospatial Consortium (OGC) Web Processing Service (WPS) Stan-dard[J]. Environmental Modelling & Software, 2013, 41:72-83 http://jwcc.iwaponline.com/content/early/2017/08/07/wcc.2017.010
    [8]
    张耀南, 龙银平, 程国栋, 等.地学研究中的集成建模环境综述[J].科研信息化技术与应用, 2014, 5(1):3-15 doi: 10.11871/j.issn.1674-9480.2014.01.001

    Zhang Yaonan, Long Yinping, Cheng Guodong, et al. Review of Integrated Modeling Environment in Earth Research[J]. E-science Technology & Application, 2014, 5(1):3-15 doi: 10.11871/j.issn.1674-9480.2014.01.001
    [9]
    Yue P, Baumann P, Bugbee K, et al. Towards Intelligent GIServices[J]. Earth Science Informatics, 2015, 8(3):463-481 doi: 10.1007/s12145-015-0229-z
    [10]
    Collins N, Theurich G, Deluca C, et al. Design and Implementation of Components in the Earth System Modeling Framework[J].International Journal of High Performance Computing Applications, 2005, 19(3):341-350 doi: 10.1177/1094342005056120
    [11]
    Moore R V, Tindall C I. An Overview of the Open Modelling Interface and Environment (the OpenMI)[J]. Environmental Science & Policy, 2005, 8(3):279-286 http://jwcc.iwaponline.com/content/early/2017/08/07/wcc.2017.010
    [12]
    Gregersen J, Gijsbers P, Westen S. OpenMI:Open Modelling Interface[J]. Journal of Hydroinformatics, 2007, 9(3):175-191 doi: 10.2166/hydro.2007.023
    [13]
    Larson J W, Norris B, Ong E T, et al. Components, the Common Component Architecture, and the Climate/Weather/Ocean Community[C]. The 84th American Meteorological Society Annual Meeting, Seattle, USA, 2004
    [14]
    Botts M, Percivall G, Reed C, et al. OGC Sensor Web Enablement: Overview and High Level Architecture[R]. Open Geospatial Consortium Inc, 2007
    [15]
    张卫民, 刘灿灿, 骆志刚.科学工作流技术研究综述[J].国防科技大学学报, 2011, 33(3):56-65 http://www.cnki.com.cn/Article/CJFDTOTAL-JLGX200803028.htm

    Zhang Weimin, Liu Cancan, Luo Zhigang. A Review on Scientific Workflows[J]. Journal of National University of Defense Technology, 2011, 33(3):56-65 http://www.cnki.com.cn/Article/CJFDTOTAL-JLGX200803028.htm
    [16]
    罗安, 王艳东, 龚健雅.顾及上下文的空间信息服务组合语义匹配方法[J].武汉大学学报·信息科学版, 2011, 36(3):368-372 http://ch.whu.edu.cn/CN/abstract/abstract485.shtml

    Luo An, Wang Yandong, Gong Jianya. A Semantic Matching Method for Geospatial Information Service Composition Based on Context[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3):368-372 http://ch.whu.edu.cn/CN/abstract/abstract485.shtml
    [17]
    张立朝, 潘贞, 王青山, 等.本体驱动的地理信息服务发现模型研究[J].武汉大学学报·信息科学版, 2009, 34(6):641-645, 658 http://ch.whu.edu.cn/CN/abstract/abstract1344.shtml

    Zhang Lichao, Pan Zhen, Wang Qingshan, et al. An Ontology-Driven Discovering Model of Geographical Information Services[J]. Geomatics and Information Science of Wuhan University, 2009, 34(6):641-645, 658 http://ch.whu.edu.cn/CN/abstract/abstract1344.shtml
    [18]
    Barker A, van Hemert J. Scientific Workflow: A Survey and Research Directions[C]. International Conference on Parallel Processing and Applied Mathematics, Gdansk, Poland, 2007
    [19]
    Callahan S P, Freire J, Santos E, et al. VisTrails: Visualization Meets Data Management[C]. 2006 ACM SIGMOD International Conference on Management of Data, Chicago, USA, 2006
    [20]
    Yue P, Zhang M, Tan Z. A Geoprocessing Workflow System for Environmental Monitoring and Integrated Modelling[J]. Environmental Modelling & Software, 2015, 69:128-140 https://www.journals.elsevier.com/environmental-modelling-and-software/
    [21]
    Beven K, Kirkby M. A Physically Based, Variable Contributing Area Model of Basin Hydrology[J].Hydrological Sciences Journal, 1979, 24(1):43-69 doi: 10.1080/02626667909491834
    [22]
    Hargreaves G H, Samani Z A. Estimating Potential Evapotranspiration[J]. Journal of the Irrigation and Drainage Division, 1982, 108(3):225-230 http://dspace.mit.edu/handle/1721.1/79479
  • Related Articles

    [1]XU Xiaohua, ZHANG Jiman, LUO Jia, GAO Pan. Retrieval and Validation of FY-3C Radio Occultation Refractivities[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1): 36-44. DOI: 10.13203/j.whugis20190361
    [2]ZHU Zhouzong, XU Xiaohua, LUO Jia. Inversion and Analysis of Atmospheric Boundary Layer Height Using FY-3C Radio Occultation Refractive Index Data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(3): 395-401. DOI: 10.13203/j.whugis20190271
    [3]JIANG Peng, YE Shirong, HE Shujing, LIU Yanyan. Ground\|based GPS Tomography of Wet Refractivity with Adaptive Kalman Filter[J]. Geomatics and Information Science of Wuhan University, 2013, 38(3): 299-302.
    [4]XU Xiaohua, LUO Jia. Statistical Validation of COSMIC Radio Occultation Refractivity Profiles[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 214-217.
    [5]ZHANG Shuangcheng, YE Shirong, WAN Rong, CHEN Bo. Preliminary Tomography Spatial Wet Refractivity Distribution Based on Kalman Filter[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8): 796-799.
    [6]YIN Haitao, HUANG Dingfa, XIONG Yongliang, WANG Guiwen. New Model for Tropospheric Delay Estimation of GPS Signal[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5): 454-457.
    [7]WU Yue, MENG Yang, WANG Zemin, XU Shaoquan. Triple-Frequency Methods for Correcting Higher-Order Ionospheric Refractive Error in GPS Modernization[J]. Geomatics and Information Science of Wuhan University, 2005, 30(7): 601-603.
    [8]Ge Huanan. Precision Calculation of Atmospheric Refraction[J]. Geomatics and Information Science of Wuhan University, 1998, 23(1): 88-91.
    [9]Yu Mozhi. A New Technique for Determining the High Refractive Index of Glass Microsphere[J]. Geomatics and Information Science of Wuhan University, 1994, 19(4): 371-373.
    [10]Yu Mozhi, Lin Yinsen, Zhong Sidong. A New Technique for Untouched Determining the Refractive Index of Lens with High Accuracy[J]. Geomatics and Information Science of Wuhan University, 1994, 19(2): 173-177.
  • Cited by

    Periodical cited type(13)

    1. 杨忠荣. 低成本车载RTK高精度定位方法. 地理空间信息. 2025(03): 96-100 .
    2. 程建华,陈思成,臧楠,程思翔,赵国晶,马子凡. 附加自适应短时高程变化率约束的PPP/INS紧组合增强模型. 测绘学报. 2024(09): 1761-1776 .
    3. 王勋,崔先强,高天杭. 动力学模型自适应滤波算法研究. 武汉大学学报(信息科学版). 2023(05): 741-748 .
    4. 张一,尹潇,宋海娜. 运动方向约束的自适应SRUKF目标跟踪算法. 导航定位学报. 2023(05): 53-59 .
    5. 李清泉,吕世望,陈智鹏,殷煜,张德津. 冬奥会国家速滑馆超大地坪平整度快速测量. 武汉大学学报(信息科学版). 2022(03): 325-333 .
    6. 辜声峰,戴春齐,何成鹏,方礼喆,王梓豪. 面向城市车载导航的多系统PPP-RTK/VIO半紧组合算法性能分析. 武汉大学学报(信息科学版). 2021(12): 1852-1861 .
    7. 陶晓晓,卢小平,路泽忠,周雨石,余振宝. WiFi融合环境光定位方法研究. 测绘科学. 2020(06): 57-61+72 .
    8. 张辰东,王兆瑞. 一种长隧道内高速列车实时高精度定位方法. 计算机仿真. 2020(09): 124-128+188 .
    9. 尹潇,柴洪洲,向民志,杜祯强. 附加运动学约束的BDS抗差UKF导航算法. 测绘学报. 2020(11): 1399-1406 .
    10. 王诒国,潘孝星. 基于马氏距离的抗差卡尔曼滤波算法在组合导航中的应用. 北京测绘. 2020(12): 1810-1814 .
    11. 吕大千,曾芳玲,欧阳晓凤,于合理. 时频传递的改进整数相位钟方法. 测绘学报. 2019(07): 889-897 .
    12. 邓中亮,尹露,唐诗浩,刘延旭,宋汶轩. 室内定位关键技术综述. 导航定位与授时. 2018(03): 14-23 .
    13. 张迪,施昆,李照永. 移动测量系统的GNSS/INS组合定位方法的对比研究. 软件. 2018(08): 110-116 .

    Other cited types(18)

Catalog

    Article views (1524) PDF downloads (202) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return