WANG Haihong, NING Jinsheng, LUO Zhicai. An Modified Method for Airborne Gravimetry Data Processing[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 511-515. DOI: 10.13203/j.whugis20160242
Citation: WANG Haihong, NING Jinsheng, LUO Zhicai. An Modified Method for Airborne Gravimetry Data Processing[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 511-515. DOI: 10.13203/j.whugis20160242

An Modified Method for Airborne Gravimetry Data Processing

Funds: The National Natural Science Foundation of China, Nos.41174062, 41131067; the Project of China, No.2013CB733302; the Special Fund for Surveying, Mapping and Geoinformation Scientific Research in the Public Interest, No.201512002.
More Information
  • Received Date: October 13, 2014
  • Published Date: April 04, 2016
  • At present, Vertical components gravity is measured and solved in a local frame with the E tv s correction in airborne scalar gravimetry systems. The classic method ignores the vertical deflection effect. In this study, an improved formula is presented and the gravity measurement problem is solved in a quasi-inertial frame. The modified method improves the classical formulas for scalar systems theoretically, avoiding computing Eötvös and other approximations. The method was validated using a numerical test. The results show that the unnecessary approximations found in the traditional method will cause sub-mGal level errors. However, these errors can become almost negligible after applying a low-pass fillter with cut-off frequency at less than 1/60 s. In addition to this theoretical advantage, the modified method can acquire mGal-level horizontal gravity estimates through a precise data processing.
  • [1]
    Forsberg R,Olesen A V, Keller K, et al. Airborne Gravity and Geoid Surveys in the Arctic and Baltic Seas[C]. Proceedings of the International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation, Banff, Canada, 2001
    [2]
    Olesen A V. Improved Airborne Scalar Gravimetry for Regional Gravity Filed Mapping and Geoid Determination[D]. Copenhagen:National Survey and Cadastre of Denmark, 2002
    [3]
    Xia Zheren, Shi Pan, Sun Zhongmiao, et al. Chinese Airborne Gravimetry System CHAGS[J]. Acta Geodaetica et Cartographica Sinica, 2004, 33(3):216-220(夏哲仁,石磐,孙中苗,等. 航空重力测量系统CHAGS[J]. 测绘学报,2004,33(3):216-220)
    [4]
    Hwang C W, Shiao Y S, Shih H C, et al. Geodetic and Geophysical Results from a Taiwan Airborne Gravity Survey:Data Reduction and Accuracy Assessment[J]. J Geophy Res, 2007, doi: 10.1029/2005JB004220
    [5]
    Sun Zhongmiao, Xia Zheren, Wang Xingtao. Determining Accuracy of Local Geoid Determined from Airborne Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2007, 32(8):692-695(孙中苗,夏哲仁,王兴涛. 利用航空重力确定局部大地水准面的精度分析[J]. 武汉大学学报·信息科学版,2007,32(8):692-695)
    [6]
    Shi Pan, Sun Zhongmiao, Xiao Yun. Calculation and Spectra Analysis of Horizontal Acceleration Corrections(HACC) for Airborne Gravimetry[J]. Geomatics and Information Science of Wuhan University, 2001, 26(6):549-554(石磐,孙中苗,肖云. 航空重力测量中水平加速度改正的计算与频域分析[J]. 武汉大学学报·信息科学版,2001,26(6):549-554)
    [7]
    Xiao Yun, Xia Zheren. Determination of Moving-base Acceleration in Airborne Gravimetry[J]. Chinese Journal of Geophysics, 2003,46(1):62-67(肖云,夏哲仁. 航空重力测量中载体运动加速度的确定[J]. 地球物理学报,2003,46(1):62-67)
    [8]
    Liang Xinghui, Liu Lintao, Yu Shengjie. The Application of B-spline Least Squares in Determining Moving-base Acceleration for Airborne Vector Gravimetry[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8):979-982(梁星辉,柳林涛,于胜杰. 利用B样条确定航空重力载体加速度的方法研究[J]. 武汉大学学报·信息科学版,2009, 34(8):979-982)
    [9]
    Sun Zhongmiao, Xia Zheren, Li Yingchun. Cross-coupling Correction for Lacoste & Romberg Airborne Gravimeter[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10):883-886(孙中苗,夏哲仁,李迎春. Lacoste & Romberg航空重力仪的交叉耦合改正[J]. 武汉大学学报·信息科学版,2006, 31(10):883-886)
    [10]
    Thompson L G D, Lacoste L J B. Arial Gravity Measurements[J]. Journal of Geophysical Research, 1960,65(1):305-322
    [11]
    Harlan R B. Eotvos Correction for Airborne Gravimetry[J]. Journal of Geophysical Research, 1968, 73(14):4675-4679
    [12]
    Sun Zhongmiao. Calculation and Error Analysis of Eötvös Corrections for Airborne Gravimetry[J]. Journal of the PLA Institute of Surveying and Mapping, 1999,16(1):5-9(孙中苗. 航空重力测量中厄特弗斯改正的计算与误差分析[J]. 解放军测绘学院学报,1999,16(1):5-9)
    [13]
    Wall R E. Airborne Gravimetry Errors Associated with Geoidal Undulations[J]. Journal of Geophysical Research, 1971, 76(29):7293-7295
    [14]
    Ouyang Yongzhong. On Key Technologies of Data Processing for Air-sea Gravity Surveys[D]. Wuhan:Wuhan University, 2013(欧阳永忠. 海空重力测量数据处理关键技术研究[D]. 武汉:武汉大学, 2013)
    [15]
    Brozena J M, Peters M F. An Airborne Gravity Study of Eastern North Carolina[J]. Geophysics, 1988, 53(2):245-253
    [16]
    Li X. An Exact Formula for the Tilt Correction in Scalar Airborne Gravimetry[J]. Journal of Applied Geodesy, 2011, 5(2):81-85
    [17]
    Li X.Examination of Two Major Approximations Used in the Scalar Airborne Gravimetric System-a Case Study Based on the LCR System[J]. Journal of Geodetic Science, 2013, 3(1):32-39
    [18]
    Jekeli C. Inertial Navigation Systems with Geodetic Applications[M]. Berlin:Walter de Gruyter, 2000
    [19]
    Pavlis N K, Holmes S A, Kenyon S C, et al. EGM2008:An Overview of Its Development and Evaluation[C]. IAG Int. Symp. GGEO, Chania, Crete, Greece, 2008
    [20]
    Li X, Jekeli C. Ground-vehicle INS/GPS Gravimetry[J]. Geophysics, 2008, 73(2):Ⅰ1-Ⅰ10
    [21]
    Li X.Strapdown INS/DGPS Airborne Gravimetry Tests in the Gulf of Mexico[J]. J Geod, 2011, 85(9):597-605
  • Related Articles

    [1]GONG Xuewen, WANG Fuhong. Impact of Multipath Error and Noise of Space-Borne GPS Code Measurements on Real-Time Onboard Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1048-1055. DOI: 10.13203/j.whugis20160223
    [2]GONG Xuewen, WANG Fuhong. Autonomous Orbit Determination of HY2A and ZY3 Missions Using Space-borne GPS Measurements[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 309-313. DOI: 10.13203/j.whugis20140892
    [3]ZHOU Xuhua, WANG Xiaohui, ZHAO Gang, PENG Hailong, WU Bin. The Precise Orbit Determination for HY2A Satellite Using GPS,DORIS and SLR Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1000-1005. DOI: 10.13203/j.whugis20130730
    [4]MA Yang, OU Jikun, YUAN Yunbin, HUO Xingliang, DING Wenwu. Estimation of GPS Antenna Phase Center Variation and Its Effect on Precise Orbit Determination of LEOs[J]. Geomatics and Information Science of Wuhan University, 2015, 40(7): 894-900. DOI: 10.13203/j.whugis20130626
    [5]QIN Jian, GUO Jinyun, KONG Qiaoli, LI Guowei. Precise Orbit Determination of Jason-2with Precision of CentimetersBased on Satellite-borne GPS Technique[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2): 137-141. DOI: 10.13203/j.whugis20120686
    [6]WANG Fuhong, XU Qichao, GONG Xuewen, ZHANG Wei. Application of a Gravity Acceleration Approximation Function in the PreciseReal-Time Orbit Determination Using Space-borne GPS Measurements[J]. Geomatics and Information Science of Wuhan University, 2014, 39(1): 47-51.
    [7]LI Wenwen, LI Min, SHI Chuang, ZHAO Qile. Jason-2 Precise Orbit Determination Using DORIS RINEX Phase Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10): 1207-1211.
    [8]GUO Jing, ZHAO Qile, LI Min, HU Zhigang. Centimeter Level Orbit Determination for HY2A Using GPS Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1): 52-55.
    [9]WANG Fuhong. A Kalman Filtering Algorithm for Precision Real-Time Orbit Determination with Space-Borne GPS Measurements[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6): 653-656.
    [10]GENG Jianghui, SHI Chuang, ZHAO Qile, LIU Jingnan. GPS Precision Orbit Determination from Combined Ground and Space-borne Data[J]. Geomatics and Information Science of Wuhan University, 2007, 32(10): 906-909.
  • Cited by

    Periodical cited type(1)

    1. 高贤君,冉树浩,张广斌,杨元维. 基于多特征融合与对象边界联合约束网络的建筑物提取. 武汉大学学报(信息科学版). 2024(03): 355-365 .

    Other cited types(0)

Catalog

    Article views (1302) PDF downloads (735) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return