Citation: | WANG Shuliang, LI Ying, GENG Jing. A Low-Dimensional Manifold Representative Point Method to Estimate the Non-parametric Density for High-Dimensional Data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1): 65-70. DOI: 10.13203/j.whugis20160115 |
[1] |
[1] Bellman R. Adaptive Control Processes: A Guided Tour[M]. New Jersey: Princeton University Press, 1961
|
[2] |
刘瑜, 康朝贵, 王法辉.大数据驱动的人类移动模式和模型研究[J].武汉大学学报·信息科学版, 2014, 39(6):660-666 doi: 10.13203/j.whugis20140149
Liu Yu, Kang Chaogui, Wang Fahui. Towards Big Data-Driven Human Mobility Patterns and Models[J].Geomatics and Information Science of Wuhan University, 2014, 39(6): 660-666 doi: 10.13203/j.whugis20140149
|
[3] |
Shankar K, Lakshmanaprabu S K, Gupta D.et al. Optimal Feature-Based Multi-Kernel SVM Approach for Thyroid Disease Classification[J]. The Journal of Supercomputing, 2020, 76(2): 1 128-1 143 doi: 10.1007/s11227-018-2469-4
|
[4] |
周源, 方圣辉, 李德仁.利用光谱角敏感森林的高光谱数据快速匹配方法[J].武汉大学学报·信息科学版, 2011, 36(6): 687-690 http://ch.whu.edu.cn/article/id/577
Zhou Yuan, Fang Shenghui, Li Deren. A Fast Spectral Matching Algorithm for Larger-Scale Hyperspectral Data:Spectral Angle Sensitive Forest[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6): 687-690 http://ch.whu.edu.cn/article/id/577
|
[5] |
Ibtehaz N, Rahman M S. MultiResUNet : Rethinking the U-Net Architecture for Multimodal Biomedical Image Segmentation[J]. Neural Networks, 2020, 121: 74-87 doi: 10.1016/j.neunet.2019.08.025
|
[6] |
张晓祥.大数据时代的空间分析[J].武汉大学学报·信息科学版, 2014, 39(6): 655-659 doi: 10.13203/j.whugis20140143
Zhang Xiaoxiang. Spatial Analysis in the Era of Big Data[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6): 655-659 doi: 10.13203/j.whugis20140143
|
[7] |
Candes E J, Li X, Ma Y, et al. Robust Principal Component Analysis[J]. Journal of the ACM, 2011, 58(3):1-11
|
[8] |
Jolliffe I T, Cadima J. Principal Component Analysis: A Review and Recent Developments[J]. Philosophical Transactions of the Royal Society A, 2016, 374(2 065): 20150202 https://pubmed.ncbi.nlm.nih.gov/26953178/
|
[9] |
Scornet E. Random Forests and Kernel Methods[J].IEEE Transactions on Information Theory, 2016, 62(3): 1 485-1 500 doi: 10.1109/TIT.2016.2514489
|
[10] |
Cox T, Cox M. Multidimensional Scaling[C]. Chapman & Hall, London, UK, 1994
|
[11] |
Vincent P, Bengio Y. Manifold Parzen Windows[C]. Advances in Neural Information Processing Systems, Cambridge, UK, 2003
|
[12] |
Goldberger J, Roweis S, Hinton G, et al. Neighbourhood Component Analysis[C].Advances in Neural Information Processing Systems, Cambridge, UK, 2005
|
[13] |
Akaike H. An Approximation to the Density Function[J]. Annals of the Institute of Statistical Mathematics, 1954, 6:127-132 doi: 10.1007/BF02900741
|
[14] |
Parzen E. On the Estimation of a Probability Density Function and the Mode[J]. Annals of Mathematical Statistics, 1962, 33:1 065-1 076 doi: 10.1214/aoms/1177704472
|
[15] |
Rosenblatt F. Remarks on Some Nonparametric Estimates of a Density Function[J]. Annals of Mathematical Statistics, 1956, 27:832-837 doi: 10.1214/aoms/1177728190
|
[16] |
Padhraic S. Model Selection for Probabilistic Clustering Using Cross-Validated Likelihood[J]. Statistics and Computing, 2000, 9: 63-72 doi: 10.1023/A:1008940618127
|