HUANG Ronggang, YANG Bisheng, LI Jianping, TIAN Mao, LIANG Xinmei. Building Points Detection from Airborne LiDAR Point Clouds Using Topological Relationship Graph Within Each Object Region[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 475-481. DOI: 10.13203/j.whugis20160112
Citation: HUANG Ronggang, YANG Bisheng, LI Jianping, TIAN Mao, LIANG Xinmei. Building Points Detection from Airborne LiDAR Point Clouds Using Topological Relationship Graph Within Each Object Region[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 475-481. DOI: 10.13203/j.whugis20160112

Building Points Detection from Airborne LiDAR Point Clouds Using Topological Relationship Graph Within Each Object Region

Funds: 

The National Key Technology Research & Development Program No. 2014BAL05B07

the National Natural Science Foundation of China No. 41531177

Public Science and Technology Research Funds Projects of Ocean No. 2013418025-6

More Information
  • Author Bio:

    HUANG Ronggang,PhD candidate, specializes in objects extraction from Airborne LiDAR point clouds and full-waveform data processing. E-mail:gang3217@whu.edu.cn

  • Corresponding author:

    YANG Bisheng, PhD, professor. E-mail:bshyang@whu.edu.cn

  • Received Date: September 11, 2016
  • Published Date: April 04, 2017
  • In the field of Airborne LiDAR point clouds processing, building points extraction is always an active area. The core of this task is to separate building points from vegetation or other objects, but it is very difficult in different urban scenes. Therefore, this paper proposes a hierarchical method to precisely detect building points, aiming to improve the ability of separating buildings and other objects in various complex urban scenes. The method firstly separates non-ground points from ground points based on the filtering process, and to extract building candidate regions from non-ground points according to some simple geometrical features of a building. For each building candidate region, the morphological reconstruction and the point segmentation are fused to generate multi-scale space, and to construct topological relationship graphs between adjacent scales. Then, the proposed method extracts building regions from all object regions by five features based on topological relationship graphs. Finally, the proposed method removes non-building points from building regions for obtaining the final building points. In order to verify the validity and reliability of the proposed method, ISPRS (International Society for Photogrammetry and Remote Sensing) benchmark datasets from Vaihingen and Toronto are selected to perform experiments, and the results are evaluated by ISPRS. Results show that Completeness, Correctness, and Quality of object-based or area-based are larger than 87.8%, 94.7% and 87.3%, respectively. And compared with other methods, the method is the most robust in object-based or area-based evaluation. It demonstrates that the method could robustly detect building points in different urban scenes with a high correctness.
  • [1]
    Shan J, Toth C K. Topographic Laser Ranging and Scanning:Principles and Processing[M]. London:CRC Press, 2008
    [2]
    Rottensteiner F, Sohn G, Gerke M, et al. Results of the ISPRS Benchmark on Urban Object Detection and 3D Building Reconstruction[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93:256-271 doi: 10.1016/j.isprsjprs.2013.10.004
    [3]
    王刃,徐青,朱新慧. 用多种策略从机载LiDAR数据中提取建筑物脚点[J]. 武汉大学学报·信息科学版,2008,33(7):688-691 http://ch.whu.edu.cn/CN/abstract/abstract1650.shtml

    Wang Ren, Xu Qing, Zhu Xinhui. Picking up Footprints of Building from Airborne LiDAR Data with Multi-strategies[J]. Geomatics and Information Science of Wuhan University, 2008, 33(7):688-691 http://ch.whu.edu.cn/CN/abstract/abstract1650.shtml
    [4]
    Mongus D, Lukač N, Žalik B. Ground and Building Extraction from LiDAR Data Based on Differential Morphological Profiles and Locally Fitted Surfaces[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93:145-156 doi: 10.1016/j.isprsjprs.2013.12.002
    [5]
    Jochem A, Höfle B, Wichmann V, et al. Area-wide Roof Plane Segmentation in Airborne LiDAR Point Clouds[J]. Computers, Environment and Urban Systems, 2012, 36(1):54-64 doi: 10.1016/j.compenvurbsys.2011.05.001
    [6]
    Yang B, Xu W, Dong Z.Automated Extraction of Building Outlines from Airborne Laser Scanning Point Clouds[J].IEEE Geoscience and Remote Sensing Letters, 2013, 10(6):1 399-1 403 doi: 10.1109/LGRS.2013.2258887
    [7]
    Awrangjeb M, Fraser C. Automatic Segmentation of Raw LiDAR Data for Extraction of Building Roofs[J]. Remote Sensing, 2014, 6(5):3 716-3 751 doi: 10.3390/rs6053716
    [8]
    徐文学, 杨必胜, 董震, 等. 标记点过程用于点云建筑物提取[J]. 武汉大学学报·信息科学版, 2014, 39(5):520-525 http://ch.whu.edu.cn/CN/abstract/abstract2971.shtml

    Xu Wenxue, Yang Bisheng, Dong Zhen, et al. Building Extraction from Point Cloud Using Marked Point Process[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5):520-525 http://ch.whu.edu.cn/CN/abstract/abstract2971.shtml
    [9]
    Niemeyer J, Rottensteiner F, Soergel U. Contextual Classification of LiDAR Data and Building Object Detection in Urban Areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 87:152-165 doi: 10.1016/j.isprsjprs.2013.11.001
    [10]
    Sohn G, Dowman I. Data Fusion of High-resolution Satellite Imagery and LiDAR Data for Automatic Building Extraction[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62:43-63 doi: 10.1016/j.isprsjprs.2007.01.001
    [11]
    管海燕,邓非,张剑清,等. 面向对象的航空影像与LiDAR数据融合分类[J]. 武汉大学学报·信息科学版,2009,34(7):830-833 http://ch.whu.edu.cn/CN/abstract/abstract1288.shtml

    Guan Haiyan, Deng Fei, Zhang Jianqing, et al. Object-based Fusion and Classification of Airborne Laser Scanning Data and Aerial Images[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7):830-833 http://ch.whu.edu.cn/CN/abstract/abstract1288.shtml
    [12]
    Qin R, Fang W. A Hierarchical Building Detection Method for very High Resolution Remotely Sensed Images Combined with DSM Using Graph Cut Optimization[J]. Photogrammetric Engineering & Remote Sensing, 2014, 80(9):873-883 https://www.researchgate.net/profile/Rongjun_Qin/publication/264718020_A_Hierarchical_Building_Detection_Method_for_Very_High_Resolution_Remotely_Sensed_Images_Combined_with_DSM_Using_Graph_Cut_Optimization/links/53ec9b1c0cf2233164945272.pdf
    [13]
    吴军,刘荣,郭宁,等. SVM加权学习下的机载LiDAR数据多元分类研究[J]. 武汉大学学报·信息科学版,2013,38(1):1-6 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201301001.htm

    Wu Jun, Liu Rong, Guo Ning, et al. Aerial LiDAR Data Classification Using Weighted Support Vector Machines[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1):1-6 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201301001.htm
    [14]
    Guo B, Huang X, Zhang F,et al. Classification of Airborne Laser Scanning Data Using Joint Boost[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 100:71-83 doi: 10.1016/j.isprsjprs.2014.04.015
    [15]
    高广, 马洪超, 张良. 利用合成算法从LiDAR数据提取屋顶面[J]. 武汉大学学报·信息科学版,2014, 39(10):1 225-1 230 http://ch.whu.edu.cn/CN/abstract/abstract3100.shtml

    Gao Guang, Ma Hongchao, Zhang Liang. Automatic Extraction of Building Roofs from LiDAR Data Using a Hybridized Method[J]. Geomatics and Information Science of Wuhan University, 2014, 39(10):1 225-1 230 http://ch.whu.edu.cn/CN/abstract/abstract3100.shtml
    [16]
    Richter R, Behrens M, Döllner J. Object Class Segmentation of Massive 3D Point Clouds of Urban Areas Using Point Cloud Topology[J]. International Journal of Remote Sensing, 2013, 34(23):8 408-8 424 doi: 10.1080/01431161.2013.838710
    [17]
    Sánchez-Lopera J, Lerma J L. Classification of LiDAR Bare-earth Points, Buildings, Vegetation, and Small Objects Based on Region Growing and Angular Classifier[J].International Journal of Remote Sensing, 2014, 35(19):6 955-6 972 doi: 10.1080/01431161.2014.960619
    [18]
    Yang B, Huang R, Dong Z, et al. Two-step Adaptive Extraction Method for Ground Points and Breaklines from Lidar Point Clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119:373-389 doi: 10.1016/j.isprsjprs.2016.07.002
    [19]
    Vincent L. Morphological Grayscale Reconstruction in Image Analysis:Applications and Efficient Algorithms[J].IEEE Transactions on Image Processing, 1993, 2:176-201 doi: 10.1109/83.217222
    [20]
    董震, 杨必胜. 车载激光扫描数据中多类目标的层次化提取方法[J]. 测绘学报, 2015, 44(9):980-987 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201509007.htm

    Dong Zhen, Yang Bisheng. Hierarchical Extraction of Multiple Objects from Mobile Laser Scanning Data[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(9):980-987 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201509007.htm
    [21]
    Rutzinger M, Rottensteiner F, Pfeifer N. A Comparison of Evaluation Techniques for Building Extraction from Airborne Laser Scanning[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2009, 2(1):11-20 doi: 10.1109/JSTARS.2009.2012488
  • Related Articles

    [1]WU Yuhao, CAO Xuefeng. Hilbert Code Index Method for Spatiotemporal Data of Virtual Battlefield Environment[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1403-1411. DOI: 10.13203/j.whugis20190394
    [2]ZHU Jie, ZHANG Hongjun. Battlefield Geographic Environment Spatiotemporal Process Model Based on Simulation Event[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1367-1377, 1437. DOI: 10.13203/j.whugis20200175
    [3]ZHU Jie, YOU Xiong, XIA Qing, ZHANG Hongjun. Battlefield Geographic Environment Data Organizational Process Modeling Based on OOPN[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 1027-1034. DOI: 10.13203/j.whugis20180313
    [4]LI Zhaoxing, ZHAI Jingsheng, WU Fang. A Shape Similarity Assessment Method for Linear Feature Generalization[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1859-1864. DOI: 10.13203/j.whugis20180164
    [5]ZHU Jie, YOU Xiong, XIA Qing. Battlefield Environment Object Spatio-Temporal Data Organizing Model Based on Task-Process[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1739-1745. DOI: 10.13203/j.whugis20170074
    [6]LI Jian, ZHOU Qu, CHEN Xiaoling, TIAN Liqiao, LI Tingting. Spatial Scale Study on Quantitative Remote Sensing of Highly Dynamic Coastal/Inland Waters[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 937-942. DOI: 10.13203/j.whugis20160174
    [7]XU Junkui, WU Fang, LIU Wenfu, JIN Pengfei. Settlement Incremental Updating Quality Evaluation Basedon Neighborhood Spatial Similarity[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 476-480. DOI: 10.13203/j.whugis20120117
    [8]AN Xiaoya, SUN Qun, YU Bohu. Feature Matching from Network Data at Different Scales Based on Similarity Measure[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2): 224-228.
    [9]LIU Pengcheng, LUO Jing, AI Tinghua, LI Chang. Evaluation Model for Similarity Based on Curve Generalization[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 114-117.
    [10]Wang Qiao. Self-similarity Analysis of Cartographic Lines and the Automated Line Generalization[J]. Geomatics and Information Science of Wuhan University, 1995, 20(2): 123-128.
  • Cited by

    Periodical cited type(1)

    1. 李成名,武鹏达,印洁. 图数统一表达地理模型及自补偿方法. 测绘学报. 2017(10): 1688-1697 .

    Other cited types(4)

Catalog

    Article views (1777) PDF downloads (487) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return