Citation: | HUANG Ronggang, YANG Bisheng, LI Jianping, TIAN Mao, LIANG Xinmei. Building Points Detection from Airborne LiDAR Point Clouds Using Topological Relationship Graph Within Each Object Region[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 475-481. DOI: 10.13203/j.whugis20160112 |
[1] |
Shan J, Toth C K. Topographic Laser Ranging and Scanning:Principles and Processing[M]. London:CRC Press, 2008
|
[2] |
Rottensteiner F, Sohn G, Gerke M, et al. Results of the ISPRS Benchmark on Urban Object Detection and 3D Building Reconstruction[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93:256-271 doi: 10.1016/j.isprsjprs.2013.10.004
|
[3] |
王刃,徐青,朱新慧. 用多种策略从机载LiDAR数据中提取建筑物脚点[J]. 武汉大学学报·信息科学版,2008,33(7):688-691 http://ch.whu.edu.cn/CN/abstract/abstract1650.shtml
Wang Ren, Xu Qing, Zhu Xinhui. Picking up Footprints of Building from Airborne LiDAR Data with Multi-strategies[J]. Geomatics and Information Science of Wuhan University, 2008, 33(7):688-691 http://ch.whu.edu.cn/CN/abstract/abstract1650.shtml
|
[4] |
Mongus D, Lukač N, Žalik B. Ground and Building Extraction from LiDAR Data Based on Differential Morphological Profiles and Locally Fitted Surfaces[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93:145-156 doi: 10.1016/j.isprsjprs.2013.12.002
|
[5] |
Jochem A, Höfle B, Wichmann V, et al. Area-wide Roof Plane Segmentation in Airborne LiDAR Point Clouds[J]. Computers, Environment and Urban Systems, 2012, 36(1):54-64 doi: 10.1016/j.compenvurbsys.2011.05.001
|
[6] |
Yang B, Xu W, Dong Z.Automated Extraction of Building Outlines from Airborne Laser Scanning Point Clouds[J].IEEE Geoscience and Remote Sensing Letters, 2013, 10(6):1 399-1 403 doi: 10.1109/LGRS.2013.2258887
|
[7] |
Awrangjeb M, Fraser C. Automatic Segmentation of Raw LiDAR Data for Extraction of Building Roofs[J]. Remote Sensing, 2014, 6(5):3 716-3 751 doi: 10.3390/rs6053716
|
[8] |
徐文学, 杨必胜, 董震, 等. 标记点过程用于点云建筑物提取[J]. 武汉大学学报·信息科学版, 2014, 39(5):520-525 http://ch.whu.edu.cn/CN/abstract/abstract2971.shtml
Xu Wenxue, Yang Bisheng, Dong Zhen, et al. Building Extraction from Point Cloud Using Marked Point Process[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5):520-525 http://ch.whu.edu.cn/CN/abstract/abstract2971.shtml
|
[9] |
Niemeyer J, Rottensteiner F, Soergel U. Contextual Classification of LiDAR Data and Building Object Detection in Urban Areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 87:152-165 doi: 10.1016/j.isprsjprs.2013.11.001
|
[10] |
Sohn G, Dowman I. Data Fusion of High-resolution Satellite Imagery and LiDAR Data for Automatic Building Extraction[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62:43-63 doi: 10.1016/j.isprsjprs.2007.01.001
|
[11] |
管海燕,邓非,张剑清,等. 面向对象的航空影像与LiDAR数据融合分类[J]. 武汉大学学报·信息科学版,2009,34(7):830-833 http://ch.whu.edu.cn/CN/abstract/abstract1288.shtml
Guan Haiyan, Deng Fei, Zhang Jianqing, et al. Object-based Fusion and Classification of Airborne Laser Scanning Data and Aerial Images[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7):830-833 http://ch.whu.edu.cn/CN/abstract/abstract1288.shtml
|
[12] |
Qin R, Fang W. A Hierarchical Building Detection Method for very High Resolution Remotely Sensed Images Combined with DSM Using Graph Cut Optimization[J]. Photogrammetric Engineering & Remote Sensing, 2014, 80(9):873-883 https://www.researchgate.net/profile/Rongjun_Qin/publication/264718020_A_Hierarchical_Building_Detection_Method_for_Very_High_Resolution_Remotely_Sensed_Images_Combined_with_DSM_Using_Graph_Cut_Optimization/links/53ec9b1c0cf2233164945272.pdf
|
[13] |
吴军,刘荣,郭宁,等. SVM加权学习下的机载LiDAR数据多元分类研究[J]. 武汉大学学报·信息科学版,2013,38(1):1-6 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201301001.htm
Wu Jun, Liu Rong, Guo Ning, et al. Aerial LiDAR Data Classification Using Weighted Support Vector Machines[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1):1-6 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201301001.htm
|
[14] |
Guo B, Huang X, Zhang F,et al. Classification of Airborne Laser Scanning Data Using Joint Boost[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 100:71-83 doi: 10.1016/j.isprsjprs.2014.04.015
|
[15] |
高广, 马洪超, 张良. 利用合成算法从LiDAR数据提取屋顶面[J]. 武汉大学学报·信息科学版,2014, 39(10):1 225-1 230 http://ch.whu.edu.cn/CN/abstract/abstract3100.shtml
Gao Guang, Ma Hongchao, Zhang Liang. Automatic Extraction of Building Roofs from LiDAR Data Using a Hybridized Method[J]. Geomatics and Information Science of Wuhan University, 2014, 39(10):1 225-1 230 http://ch.whu.edu.cn/CN/abstract/abstract3100.shtml
|
[16] |
Richter R, Behrens M, Döllner J. Object Class Segmentation of Massive 3D Point Clouds of Urban Areas Using Point Cloud Topology[J]. International Journal of Remote Sensing, 2013, 34(23):8 408-8 424 doi: 10.1080/01431161.2013.838710
|
[17] |
Sánchez-Lopera J, Lerma J L. Classification of LiDAR Bare-earth Points, Buildings, Vegetation, and Small Objects Based on Region Growing and Angular Classifier[J].International Journal of Remote Sensing, 2014, 35(19):6 955-6 972 doi: 10.1080/01431161.2014.960619
|
[18] |
Yang B, Huang R, Dong Z, et al. Two-step Adaptive Extraction Method for Ground Points and Breaklines from Lidar Point Clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119:373-389 doi: 10.1016/j.isprsjprs.2016.07.002
|
[19] |
Vincent L. Morphological Grayscale Reconstruction in Image Analysis:Applications and Efficient Algorithms[J].IEEE Transactions on Image Processing, 1993, 2:176-201 doi: 10.1109/83.217222
|
[20] |
董震, 杨必胜. 车载激光扫描数据中多类目标的层次化提取方法[J]. 测绘学报, 2015, 44(9):980-987 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201509007.htm
Dong Zhen, Yang Bisheng. Hierarchical Extraction of Multiple Objects from Mobile Laser Scanning Data[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(9):980-987 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201509007.htm
|
[21] |
Rutzinger M, Rottensteiner F, Pfeifer N. A Comparison of Evaluation Techniques for Building Extraction from Airborne Laser Scanning[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2009, 2(1):11-20 doi: 10.1109/JSTARS.2009.2012488
|
[1] | WU Yuhao, CAO Xuefeng. Hilbert Code Index Method for Spatiotemporal Data of Virtual Battlefield Environment[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1403-1411. DOI: 10.13203/j.whugis20190394 |
[2] | ZHU Jie, ZHANG Hongjun. Battlefield Geographic Environment Spatiotemporal Process Model Based on Simulation Event[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1367-1377, 1437. DOI: 10.13203/j.whugis20200175 |
[3] | ZHU Jie, YOU Xiong, XIA Qing, ZHANG Hongjun. Battlefield Geographic Environment Data Organizational Process Modeling Based on OOPN[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 1027-1034. DOI: 10.13203/j.whugis20180313 |
[4] | LI Zhaoxing, ZHAI Jingsheng, WU Fang. A Shape Similarity Assessment Method for Linear Feature Generalization[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1859-1864. DOI: 10.13203/j.whugis20180164 |
[5] | ZHU Jie, YOU Xiong, XIA Qing. Battlefield Environment Object Spatio-Temporal Data Organizing Model Based on Task-Process[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1739-1745. DOI: 10.13203/j.whugis20170074 |
[6] | LI Jian, ZHOU Qu, CHEN Xiaoling, TIAN Liqiao, LI Tingting. Spatial Scale Study on Quantitative Remote Sensing of Highly Dynamic Coastal/Inland Waters[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 937-942. DOI: 10.13203/j.whugis20160174 |
[7] | XU Junkui, WU Fang, LIU Wenfu, JIN Pengfei. Settlement Incremental Updating Quality Evaluation Basedon Neighborhood Spatial Similarity[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 476-480. DOI: 10.13203/j.whugis20120117 |
[8] | AN Xiaoya, SUN Qun, YU Bohu. Feature Matching from Network Data at Different Scales Based on Similarity Measure[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2): 224-228. |
[9] | LIU Pengcheng, LUO Jing, AI Tinghua, LI Chang. Evaluation Model for Similarity Based on Curve Generalization[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 114-117. |
[10] | Wang Qiao. Self-similarity Analysis of Cartographic Lines and the Automated Line Generalization[J]. Geomatics and Information Science of Wuhan University, 1995, 20(2): 123-128. |
1. |
李成名,武鹏达,印洁. 图数统一表达地理模型及自补偿方法. 测绘学报. 2017(10): 1688-1697 .
![]() |