FENG Zongwei, ZHONG Yanwei, ZHENG Weiling, PAN Shaoming. Image Compression Algorithm Based on Analysis Dictionary[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2): 262-267, 274. DOI: 10.13203/j.whugis20160085
Citation: FENG Zongwei, ZHONG Yanwei, ZHENG Weiling, PAN Shaoming. Image Compression Algorithm Based on Analysis Dictionary[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2): 262-267, 274. DOI: 10.13203/j.whugis20160085

Image Compression Algorithm Based on Analysis Dictionary

Funds: 

The National Natural Science Foundation of China 61572372

The National Natural Science Foundation of China 41671382

The National Natural Science Foundation of China 41271398

the Fund of SAST SAST201425

LIESMARS Special Research Funding 

More Information
  • Author Bio:

    FENG Zongwei, master, specializes in computer vision and image processing. E-mail: fengzongwei@yeah.net

  • Corresponding author:

    CHONG Yanwen, PhD, professor. E-mail: ywchong@whu.edu.cn

  • Received Date: November 15, 2016
  • Published Date: February 04, 2018
  • With the development of high resolution imaging techniques, the volume of data adds serious challenges to the compression, storage and transmission of images. Recently, compressed sensing theory adds new solutions to image compression since the ability of reconstructing original signals with a small amount of observation values.The sparsity of the signal is the premise of the application of the compressed sensing theory, so the sparse representation of the data is the key step in the compression of image. The key of sparse representation is the dictionary, and the main dictionary models are synthesis model and analysis model. Along with the extension of the application of the dictionary learned through the synthesis model in the image compression, the time-consuming of the image in the sparse representation becomes a key factor restricting the efficiency of the system. Therefore, in view of the defect of the synthesis model in the application, combined with the advantages of the analysis model in the process of sparse representation, we proposed an image block compression model based on analysis dictionary(ALDBCS). In this model, firstly, a dictionary is learned through the prior data set, and then in order to reduce the cost of the sparse representation, the dictionary is introduced to the process of image compression. The standard testing library of natural images is used as testing images, time-consuming and reconstruction quality are taken as evaluation criterions, the experimental results proves that the ALDBCS model can not only improve the quality of image reconstruction, but also reduce the time consuming of image compression.
  • [1]
    Donoho D L.Compressed Sensing[J].IEEE Transactions on Information Theory, 2006, 52(4):1289-1306 doi: 10.1109/TIT.2006.871582
    [2]
    Candes E J, Romberg J, Tao T.Robust Uncertainty Principles:Exact Signal Reconstruction from Highly Incomplete Frequency Information[J].IEEE Transaction on Information Theory, 2006, 52(2):489-509 doi: 10.1109/TIT.2005.862083
    [3]
    焦李成, 杨淑媛, 刘芳, 等.压缩感知回顾与展望[J].电子学报, 2011, 39(7):1651-1662 http://www.doc88.com/p-330731702475.html

    Jiao Licheng, Yang Shuyuan, Liu Fang, et al. Development and Prospect of Compressive Sensing[J].Acta Electronica Sinica, 2011, 39(7):1651-1662 http://www.doc88.com/p-330731702475.html
    [4]
    练秋生, 石保顺, 陈书贞.字典学习模型、算法及其应用研究进展[J].自动化学报, 2015, 41(2):240-260 https://www.cnki.com.cn/qikan-JZDF201606005.html

    Lian Qiusheng, Shi Baoshun, Chen Shuzhen. Research Advances on Dictionary Learning Models, Algorithms and Applications[J].Acta Automatica Sinica, 2015, 41(2):240-260 https://www.cnki.com.cn/qikan-JZDF201606005.html
    [5]
    Elad M, Milanfar P, Rubinstein R. Analysis Versus Synthesis in Signal Priors[J]. Inverse Problems, 2007, 23(3):947-968 doi: 10.1088/0266-5611/23/3/007
    [6]
    Rubinstein R, Bruckstein A M, Elad M. Dictionaries for Sparse Representation Modeling[J].Proceedings of the IEEE, 2010, 98(6):1045-1057 doi: 10.1109/JPROC.2010.2040551
    [7]
    Nam S, Davies M E, Elad M, Gribonval R. The Cosparse Analysis Model and Algorithms[J]. Applied and Computational Harmonic Analysis, 2013, 34(1):30-56 doi: 10.1016/j.acha.2012.03.006
    [8]
    Rubinstein R, Elad M. K-SVD Dictionary Learning for Analysis Sparse Models[J]. IEEE International Conference on Acoustics, Speech & Signal Processing, 2012, 22(10):5405-5408 http://www.cs.technion.ac.il/~elad/talks/2011/Analysis_Edinburgh_2011.pdf
    [9]
    Rubinstein R, Peleg T, Elad M. Analysis K-SVD:A Dictionary Learning Algorithm for the Analysis Sparse Model[J]. IEEE Transactions on Signal Processing, 2013, 61(3):661-677 doi: 10.1109/TSP.2012.2226445
    [10]
    Rubinstein R. Elad M, Dictionary Learning for Analysis-Synthesis Thresholding[J].IEEE Transactions on Signal Processing, 2014, 62(22):5962-5972 doi: 10.1109/TSP.2014.2360157
    [11]
    Ring W, Wirth B. Optimization Methods on Riemannian Manifolds and their Application to Shape Space[J].Soc.Indian Autom. Manuf. J. Optimi, 2012, 22(2):596-627 doi: 10.1137/11082885X
    [12]
    Hawe S, Kleinsteuber M, Diepold K. Analysis Operator Learning and its Application to Image Reconstruction[J].IEEE Transactions on Image Processing, 2013, 22(6):2138-2150 doi: 10.1109/TIP.2013.2246175
    [13]
    Lu G. Block Compressed Sensing of Natural Images[C]. Proceedings of the International Conference on Digital Signal Processing, Cardiff, UK, 2007 http://ieeexplore.ieee.org/document/4288604/
    [14]
    Fowler E J, Mun S, Tramel E W. Multiscale Block Compressed Sensing with Smoothed Projected Landweber Reconstruction[C]. 19th European Signal Processing Conference (EUSIPCO 2011), Eurasip, Spain, 2011 http://ieeexplore.ieee.org/document/7073994/
    [15]
    Lorintiu O, Liebgott H, Alessandrini M, et al. Compressed Sensing Reconstruction of 3D Ultrasound Data Using Dictionary Learning and Line-Wise Subsampling[J].IEEE Transactions on Medical Imaging, 2015, 34(12):2467-2477 doi: 10.1109/TMI.2015.2442154
    [16]
    Mun S, Fowler J E, Block Compressed Sensing of Images Using Directional Transforms[C]. Proceedings of the International Conference on Image Processing, Cairo, Egypt, 2009 http://ieeexplore.ieee.org/document/5414429
  • Related Articles

    [1]Yang Shuwen, Li Yikun, Liu Tao, Yao Huaqin. A New Automatic Water Body Feature Extraction MethodBased on SPOTS Images[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3): 308-314.
    [2]XU Chuang, LUO Zhicai, LIN Xu, ZHOU Boyang. Automatic Preprocessing of Tidal Gravity Observation Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 157-161.
    [3]XU Aiping, SHENG Wenshun, SHU Hong. Spatiotemporal Interpolation and Cross Validation Based on Product-Sum Model[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 766-769.
    [4]WANG Zhu, LI Shujun, ZHANG Lihua, LI Ning. A Method for Automatic Routing Based on Route Binary Tree[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4): 407-410.
    [5]Lin Zongjian, Zhang Jixian. An Algorithm for Automatic Location and Orientation in Pattern Designed Environment[J]. Geomatics and Information Science of Wuhan University, 1998, 23(4): 351-354,376.
    [6]Deng Dexiang, Li Yulin, Zhong Chengdong. An Advance Probe Method for Automatic Synthesize of Combinational Logic Circuitsc[J]. Geomatics and Information Science of Wuhan University, 1997, 22(2): 160-162.
    [7]Cheng Kongzhe, Zhu Xinyan, Zhang Yinzhou, Su Guangkui. Study on Automatic Chinese-Label Placement[J]. Geomatics and Information Science of Wuhan University, 1997, 22(2): 136-141.
    [8]Wang Qiao, Wu Hehai. The Research on Fractal Method of Automatic Generalization of Map Polygons[J]. Geomatics and Information Science of Wuhan University, 1996, 21(1): 59-63.
    [9]Guo Renzhong, Wh Hehai. A Research on the Automatic Generalization of Urban Settlement on a Topographic Map[J]. Geomatics and Information Science of Wuhan University, 1993, 18(2): 15-22.
    [10]Li Jinxiang, Su Guangkui, Chen Manling. Automatic Monitor System[J]. Geomatics and Information Science of Wuhan University, 1986, 11(3): 46-54.
  • Cited by

    Periodical cited type(3)

    1. 朱广彬,常晓涛,瞿庆亮,周苗. 利用卫星引力梯度确定地球重力场的张量不变方法研究. 武汉大学学报(信息科学版). 2022(03): 334-340 .
    2. 刘焕玲,文汉江,徐新禹,赵永奇,蔡剑青. GOCE实测数据反演高阶重力场模型的Torus方法. 测绘学报. 2020(08): 965-973 .
    3. 景小阳,裴婧,许航,解文博. 使用Savitzky—Golay滤波器改进的位场ISVD算法. 工程地球物理学报. 2019(04): 486-493 .

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return