ZHUANG Huifu, DENG Kazhong, YU Mei, FAN Hongdong. A Novel Approach Combining KI Criterion and Inverse Gaussian Model to Unsupervised Change Detection in SAR Images[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2): 282-288. DOI: 10.13203/j.whugis20160079
Citation: ZHUANG Huifu, DENG Kazhong, YU Mei, FAN Hongdong. A Novel Approach Combining KI Criterion and Inverse Gaussian Model to Unsupervised Change Detection in SAR Images[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2): 282-288. DOI: 10.13203/j.whugis20160079

A Novel Approach Combining KI Criterion and Inverse Gaussian Model to Unsupervised Change Detection in SAR Images

Funds: 

The Natural Science Foundation of China 51774270

the Opening fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology) SKLGP2016K008

More Information
  • Author Bio:

    ZHUANG Huifu, PhD candidate, specializes in change detection of remote sensing images. E-mail: huifuzhuang@163.com

  • Corresponding author:

    DENG Kazhong, PhD, professor. E-mail: kzdeng@cumt.edu.cn

  • Received Date: May 22, 2016
  • Published Date: February 04, 2018
  • In this context, a novel approach combining inverse Gaussian model (IGM) and the Kittler-Illingworth (KI) criterion has been proposed to carry out tunsupervised change detection in synthetic aperture radar (SAR) images. The minimum error threshold could be computed by exploiting the Bayes decision theory under the assumption that hybrid IGM could describe the distribution of the changed and unchanged class in difference image. Experiments carried out on two sets of multi-temporal SAR images indicate that the proposed approach can effectively estimate the probability density function of the unchanged and changed classes in the difference image and acquire a reasonable threshold for yielding a better change map from the difference image.
  • [1]
    Bruzzone L, Prieto D F. Automatic Analysis of the Difference Image for Unsupervised Change Detection[J]. IEEE Transactions on Geoscience & Remote Sensing, 2000, 38(3):1171-1182 http://citeseerx.ist.psu.edu/showciting?cid=106381
    [2]
    Onur I, Maktav D, Sari M, et al. Change Detection of Land Cover and Land Use Using Remote Sensing and GIS:a Case Study in Kemer, Turkey[J]. International Journal of Remote Sensing, 2009, 30(7):1749-1757 doi: 10.1080/01431160802639665
    [3]
    Ye S, Chen D. An Unsupervised Urban Change Detection Procedure by Using Luminance and Saturation for Multispectral Remotely Sensed Images[J]. Photogrammetric Engineering & Remote Sensing, 2015, 81(8):637-645 https://www.sciencedirect.com/science/article/pii/S0099111215302056
    [4]
    Chehata N, Orny C, Boukir S, et al. Object-based Change Detection in wind Storm-damaged Forest Using High-resolution Multispectral Images[J]. International Journal of Remote Sensing, 2014, 35(13):4758-4777 doi: 10.1080/01431161.2014.930199
    [5]
    Byun Y, Han Y, Chae T. Image Fusion-based Change Detection for Flood Extent Extraction Using Bi-temporal very High-Resolution Satellite Images[J]. Remote Sensing, 2015, 7(8):10347-10363 doi: 10.3390/rs70810347
    [6]
    Kusetogullari H, Yavariabdi A, Celik T. Unsupervised Change Detection in Multitemporal Multispectral Satellite Images Using Parallel Particle Swarm Optimization[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2015, 8(5):2151-2164 doi: 10.1007/978-981-10-3005-5_44
    [7]
    Zhuang H, Deng K, Yu Y, et al. An Approach Based on Discrete Wavelet Transform to Unsupervised Change Detection in Multispectral Images[J]. International Journal of Remote Sensing, 2017, 38(17):4914-4930 doi: 10.1080/01431161.2017.1331475
    [8]
    Chaabane S H F. On the SAR Change Detection Review and Optimal Decision[J]. International Journal of Remote Sensing, 2014, 35(5):1693-1714 doi: 10.1080/01431161.2014.882030
    [9]
    Marin C, Bovolo F, Bruzzone L. Building Change Detection in Multitemporal very High Resolution SAR Images[J]. IEEE Transactions on Geoscience & Remote Sensing, 2015, 53(5):2664-2682 http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=6948368&punumber%3D36
    [10]
    Zhuang H, Deng K, Fan H. Filtering Approach Based on Voter Model and Spatial-contextual Information to the Binary Change Map in SAR Images[J]. Journal of the Indian Society of Remote Sensing, 2017, 45(5):733-741 doi: 10.1007/s12524-016-0639-5
    [11]
    庄会富, 邓喀中, 范洪冬.纹理特征向量与最大化熵法相结合的SAR影像非监督变化检测[J].测绘学报, 2016, 45(3):339-346 doi: 10.11947/j.AGCS.2016.20150022

    Zhuang Huifu, Deng Kazhong, Fan Hongdong. SAR Images Unsupervised Change Detection Based on Combination of Texture Feature Vector with Maximum Entropy Principle[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(3):339-346 doi: 10.11947/j.AGCS.2016.20150022
    [12]
    Wong A K C, Sahoo P K. A Gray-Level Threshold Selection Method Based on Maximum Entropy Principle[J]. IEEE Transactions on Systems Man & Cybernetics, 1989, 19(4):866-871 http://www.academia.edu/11434464/A_gray-level_threshold_selection_method_based_on_maximum_entropy_principle
    [13]
    Otsu N. A Threshold Selection Method from Gray-level Histograms[J]. IEEE Transactions on Systems Man & Cybernetics, 1979, 9(1):62-66 http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=4310064&arnumber=4310076
    [14]
    Milligan G W, Cooper M C. An Examination of Procedures for Determining the Number of Clusters in a Data Set[J]. Psychometrika, 1985, 50(2):159-179 doi: 10.1007/BF02294245
    [15]
    Lorenzo B, Diego F P. An Adaptive Semiparametric and Context-based Approach to Unsupervised Change Detection in Multitemporal Remote-sensing Images[J]. IEEE Transactions on Image Processing, 2002, 11(4):452-466 doi: 10.1109/TIP.2002.999678
    [16]
    Bazi Y, Bruzzone L, Melgani F. An Unsupervised Approach Based on the Generalized Gaussian Model to Automatic Change Detection in Multitemporal SAR Images[J]. IEEE Transactions on Geoscience & Remote Sensing, 2005, 43(4):874-887 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.459.425
    [17]
    Kittler J, Illingworth J. Minimum Error Thresholding[J]. Pattern Recognition, 1986, 19(1):41-47 https://www.sciencedirect.com/science/article/pii/0031320386900300
    [18]
    黄世奇, 刘代志, 胡明星, 等.基于小波变换的多时相SAR图像变化检测技术[J].测绘学报, 2010, 39(2):180-186 https://www.wenkuxiazai.com/doc/9768ff0e581b6bd97f19ea8f-4.html

    Huang Siqi, Liu Daizhi, Hu Minxin, et al. Multitemporal SAR Image Change Detection Technique Based on Wavelet Transform[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(2):180-186 https://www.wenkuxiazai.com/doc/9768ff0e581b6bd97f19ea8f-4.html
    [19]
    胡召玲.广义高斯模型及KI双阈值法的SAR图像非监督变化检测[J].测绘学报, 2013, 42(1):116-122 http://d.wanfangdata.com.cn/Periodical/chxb201301017

    Hu Zhaoling. An Unsupervised Change Detection Approach Based on KI Dual Thresholds Under the Generalized Gauss Model Assumption in SAR Images[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(1):116-122 http://d.wanfangdata.com.cn/Periodical/chxb201301017
    [20]
    Whitmore G A. The Inverse Gaussian Distribution as a Model of Hospital stay[J]. Health Services Research, 1975, 10(3):297-302 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1071863/
    [21]
    Kara M. Statistical Inference for Geometric Process with the Inverse Gaussian Distribution[J]. Journal of Statistical Computation & Simulation, 2015:1-10 doi: 10.1080/00949655.2014.958087?src=recsys
    [22]
    Griffin L D. Mean, Median and Mode Filtering of Images[J]. Proc. R. Soc. Lond. A, 2000, 456:2995-3004 doi: 10.1098/rspa.2000.0650

Catalog

    Article views (1798) PDF downloads (282) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return