ZHANG Bao, YAO Yibin, HU Yufeng, XU Chaoqian. The Application of Gauss Function in Tropospheric Tomography in Hong Kong Area[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1047-1053. DOI: 10.13203/j.whugis20150165
Citation: ZHANG Bao, YAO Yibin, HU Yufeng, XU Chaoqian. The Application of Gauss Function in Tropospheric Tomography in Hong Kong Area[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1047-1053. DOI: 10.13203/j.whugis20150165

The Application of Gauss Function in Tropospheric Tomography in Hong Kong Area

Funds: 

The Fundamental Research Funds for the Central Universities 2014214020202

Surveying and Mapping Basic Research Program of National Administration of Surveying, Mapping and Geoinformation 13-02-09

More Information
  • Author Bio:

    ZHANG Bao, PhD candidate, specializes in GPS/Met and GNSS data processing. E-mail: sggzb@whu.edu.cn

  • Received Date: July 07, 2015
  • Published Date: August 04, 2017
  • In recent three decades, the development of Global Positioning System (GPS) highly extends its application fields, one of which is to use GPS monitor water vapor in the troposphere. When Slant wet delays of GPS signals are treated as tomography observations, they can be used to retrieve three-dimensional wet refractivity fields of the troposphere. However, due to the uneven distribution of the signal rays and flat orography of the network in Hong Kong, the tomography observation equations are ill-posed, so some constraints are usually added to determine the unique tomography solution. since the water vapor changes rapidly in the vertical direction, appropriate vertical constraints play an important role in retrieving the accurate vertical structure of the wet refractivity fields. By investigating the vertical distribution characteristics of the wet refractivity in the atmosphere in Hong Kong area, we find that the Gaussian function could well express the relationship between the wet refractivity and the height. The tomographic experiments using data from Hong Kong Satellite Positioning Reference Station Network shows that tomographic solution using Gaussian function to establish vertical constraints gets a better agreement with the radiosonde data and the European Centre for Medium-Range Weather Forecasts (ECMWF) data when compared with the solution obtained by establishing vertical constraints by using the exponential function. The improvements with respect to standard deviation are 3.8 mm/km in the whole troposphere and 4.7 mm/km in the lower troposphere. The experiments also show that using good a priori wet refractivity from other meteorological data sources, like radiosonde, could help obtain good tomographic solutions.
  • [1]
    Hajj G A, Ibanez-Meier R, Kursinski E R, et al. Imaging the Ionosphere with the Global Positioning System[J]. International Journal of Imaging Systems and Technology, 1994, 5(2):174-187 doi: 10.1002/(ISSN)1098-1098
    [2]
    Ruffini G, Flores A, Rius A. GPS Tomography of the Ionospheric Electron Content with a Correlation Functional[J]. Geoscience and Remote Sensing, IEEE Transactions on, 1998, 36(1):143-153 doi: 10.1109/36.655324
    [3]
    Flores A, Ruffini G, Rius A. 4D Tropospheric Tomography Using GPS Slant Wet Delays[J]. Annales Geophysicae, 2000, 18:223-234 doi: 10.1007/s00585-000-0223-7
    [4]
    Seko H, Shimada S, Nakamura H, et al. Three-Dimensional Distribution of Water Vapor Estimated from Tropospheric Delay of GPS Data in a Mesoscale Precipitation System of the Baiu Front[J]. Earth, Planets and Space, 2000, 52(11):927-933 doi: 10.1186/BF03352307
    [5]
    Braun J, Rocken C. Water Vapor Tomography within the Planetary Boundary Layer Using GPS[C]. International Workshop on GPS Meteorology, Tsukuba, Japan, 2003
    [6]
    Song S L, Zhu W Y, Ding J C, et al. 3D Water-Vapor Tomography with Shanghai GPS Network to Improve Forecasted Moisture Field[J]. Chinese Science Bulletin, 2006, 51(5):607-614 doi: 10.1007/s11434-006-0607-5
    [7]
    Rohm W, Zhang K, Bosy J. Unconstrained, Robust Kalman Filtering for GNSS Troposphere Tomography[J]. Atmospheric Measurement Techniques Discussions, 2013, 6(5):9133-9162 doi: 10.5194/amtd-6-9133-2013
    [8]
    叶世榕, 江鹏, 刘炎炎.地基GPS网层析水汽三维分布数值积分方法[J].测绘学报, 2013, 42(5):654-660 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201305006.htm

    Ye Shirong, Jiang Peng, Liu Yanyan. A Water Vapor Tomographic Numerical Quadrature Approach with Ground-Based GPS Network[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(5):654-660 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201305006.htm
    [9]
    于胜杰, 柳林涛.利用选权拟合法进行GPS水汽层析解算[J].武汉大学学报·信息科学版, 2012, 37(2):184-186 http://ch.whu.edu.cn/CN/abstract/abstract125.shtml

    Yu Shengjie, Liu Lintao. Application of Fitting Method by Selection of the Parameter Weights on GPS Water Vapor Tomography[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2):184-186 http://ch.whu.edu.cn/CN/abstract/abstract125.shtml
    [10]
    于胜杰, 柳林涛, 梁星辉.约束条件对GPS水汽层析解算的影响分析[J].测绘学报, 2010, 39(5):492-496 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201005011.htm

    Yu Shengjie, Liu Lintao, Liang Xinghui. Influence Analysis of Constrains on GPS Water Vapor Tomography[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(5):492-496 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201005011.htm
    [11]
    King R W, Bock Y. Documentation for the GAMIT GPS Analysis Software[M]. Cambridge:Mass. Inst. of Technol., 1999
    [12]
    Saastamoinen J.Introduction to Practical Computation of Astronomical Refraction[J]. Bulletin Geodesique, 1972, 106(1):383-397 doi: 10.1007/BF02522047
    [13]
    Elosegui P, Davis J L, Gradinarsky L P, et al. Sensing Atmospheric Structure Using Small-Scale Space Geodetic Networks[J]. Geophysical Research Letters, 1999, 26(16):2445-2448 doi: 10.1029/1999GL900585
    [14]
    Ruffini G, Kruse L P, Rius A, et al. Estimation of Tropospheric Zenith Delay and Gradients over the Madrid Area Using GPS and WVR Data[J]. Geophysical Research Letters, 1999, 26(4):447-450 doi: 10.1029/1998GL900238
    [15]
    Flores A, De Arellano J V G, Gradinarsky L P, et al. Tomography of the Lower Troposphere Using a Small Dense Network of GPS Receivers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(2):439-447 doi: 10.1109/36.905252
    [16]
    Duan J, Bevis M, Fang P, et al. GPS Meteorology:Direct Estimation of the Absolute Value of Precipitable Water[J]. Journal of Applied Meteorology, 1996, 35(6):830-838 doi: 10.1175/1520-0450(1996)035<0830:GMDEOT>2.0.CO;2
    [17]
    Thayer G D. An Improved Equation for the Radio Refractive Index of Air[J]. Radio Science, 1974, 9(10):803-807 doi: 10.1029/RS009i010p00803
    [18]
    Song S, Zhu W, Ding J, et al. 3D Water-Vapor Tomography with Shanghai GPS Network to Improve Forecasted Moisture Field[J]. Chinese Science Bulletin, 2006, 51(5):607-614 doi: 10.1007/s11434-006-0607-5
    [19]
    曹玉静. 地基GPS层析大气三维水汽及其在气象中的应用[D]. 北京: 中国科学院, 2012 http://cdmd.cnki.com.cn/Article/CDMD-85101-1012410143.htm

    Cao Yujing. GPS Tomographying Three-Dimensional Atmospheric Water Vapor and Its Meteorological Applications[D]. Beijing:Chinese Academy of Sciences, 2012 http://cdmd.cnki.com.cn/Article/CDMD-85101-1012410143.htm
  • Related Articles

    [1]WANG Leyang, YU Hang. Weighted Total Least Squares Method for Joint Adjustment Model with Weight Scaling Factor[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1233-1240. DOI: 10.13203/j.whugis20170265
    [2]LI Linlin, ZHOU Yongjun, ZHOU Yu. A Weighted Total Least Squares Adjustment Method for Building Regularization[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 422-428. DOI: 10.13203/j.whugis20160510
    [3]LIU Chunyang, WANG Jian, WANG Bin, LIU Chao, LIU Jiping. Robust Weight Total Least Squares Algorithm of Correlated Observation Based on Median Parameter Method[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 378-384. DOI: 10.13203/j.whugis20160516
    [4]XIE Jian, LONG Sichun, LI Li, LI Bochao. An Aggregate Function Method for Weighted Total Least Squares with Inequality Constraints[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1526-1530. DOI: 10.13203/j.whugis20160507
    [5]WANG Leyang, YU Hang. Application of Total Least Squares Joint Adjustment to Volcano Inversion of Mogi Model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1333-1341. DOI: 10.13203/j.whugis20160469
    [6]WANG Leyang, XU Guangyu, CHEN Xiaoyong. Total Least Squares Adjustment of Partial Errors-in-Variables Model with Weight Scaling Factor[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 857-863. DOI: 10.13203/j.whugis20150001
    [7]WANG Leyang, XU Guangyu. Application of Posteriori Estimation of a Stochastic Model on the Weighted Total Least Squares Problem[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 255-261. DOI: 10.13203/j.whugis20140275
    [8]WANG Leyang, XU Caijun. Total Least Squares Adjustment with Weight Scaling Factor[J]. Geomatics and Information Science of Wuhan University, 2011, 36(8): 887-890.
    [9]WANG Leyang, XU Caijun, LU Tieding. Ridge Estimation Method in Ill-posed Weighted Total Least Squares Adjustment[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11): 1346-1350.
    [10]Wang Renxiang. Effects of Parameters of Weight Function for Blunder Detection by the Recursive Weighted Least Squares Method[J]. Geomatics and Information Science of Wuhan University, 1988, 13(4): 42-50.
  • Cited by

    Periodical cited type(7)

    1. 陈丽,王岩,邵德盛. 病态加权最小二乘混合模型的k-Liu估计解法. 统计与决策. 2024(08): 17-21 .
    2. 史浩伟,俞克豪,李丽华,李淑慧,杨红磊,罗士淇. 顾及坐标精度的地球自转参数联合解算方法研究. 测绘科学. 2024(03): 1-7 .
    3. 郭春喜,郭鑫伟,聂建亮,王斌,刘晓云,王海涛. 利用GNSS水准成果融合构建中国大陆垂直运动模型. 武汉大学学报(信息科学版). 2023(04): 579-586 .
    4. 宋迎春,宋采薇,左廷英. 带有界不确定性的加权混合估计方法. 武汉大学学报(信息科学版). 2020(07): 949-955 .
    5. 王乐洋,余航. 附有相对权比的加权总体最小二乘联合平差方法. 武汉大学学报(信息科学版). 2019(08): 1233-1240 .
    6. 吴光明,鲁铁定. 病态总体最小二乘靶向奇异值修正法. 大地测量与地球动力学. 2019(08): 856-862 .
    7. 王乐洋,余航. 火山Mogi模型反演的总体最小二乘联合平差方法. 武汉大学学报(信息科学版). 2018(09): 1333-1341 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return