Citation: | SU Yong, FAN Dongming, PU Xinggang, YOU Wei, XIAO Dongsheng, YU Bing. New Static Gravity Field Model SWJTU-GOGR01S Derived from GOCE Data and GRACE Normal Equation[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 457-463. DOI: 10.13203/j.whugis20150100 |
[1] |
Drinkwater M R, Haagmans R, Muzi D, et al. The GOCE Gravity Mission: ESA's First Core Earth Explorer[C]. The 3th International GOCE User Workshop, Frascati, Italy, 2006 https://www.researchgate.net/publication/284482935_The_GOCE_gravity_mission_ESA'a_first_core_Earth_explorer
|
[2] |
Tapley B D, Bettadpur S, Watkins M, et al. The Gravity Recovery and Climate Experiment:Mission Overview and Early Results[J]. Geophysical Research Letters, 2004, 31(9):1-8 https://www.researchgate.net/profile/Christoph_Reigber/publication/232095595_The_Gravity_Recovery_and_Climate_Experiment_Mission_overview_and_early_results/links/00b4951860399b7941000000/The-Gravity-Recovery-and-Climate-Experiment-Mission-overview-and-early-results.pdf
|
[3] |
Bingham R J, Knudsen P, Andersen O, et al. An Initial Estimate of the North Atlantic Steady-State Geostrophic Circulation from GOCE[J]. Geophysical Research Letters, 2011, 38(1):1-10 http://adsabs.harvard.edu/abs/2011GeoRL..38.1606B
|
[4] |
Garcia R F, Bruinsma S, Lognonné P, et al. GOCE:The First Seismometer in Orbit Around the Earth[J]. Geophysical Research Letters, 2013, 40(5):1015-1020 doi: 10.1002/grl.50205
|
[5] |
Tapley B, Ries J, Bettadpur S, et al. The GGM03 Mean Earth Gravity Model from GRACE[C]. Fall Meeting of American Geophysical Union, United States, 2007 http://adsabs.harvard.edu/abs/2007AGUFM.G42A..03T
|
[6] |
Förste C, Flechtner F, Schmidt R, et al. EIGEN-GL05C: A New Global Combined High-Resolution GRACE-based Gravity Field Model of the GFZ-GRGS Cooperation[C]. European Geosciences Union General Assembly, Vienna, Austria, 2008 http://gfzpublic.gfz-potsdam.de/pubman/faces/viewItemOverviewPage.jsp?itemId=escidoc:236888
|
[7] |
Jäggi A, Prange L, Meyer U, et al. Gravity Field Determination at AIUB: From Annual to Multi-annual Solutions[C]. European Geosciences Union General Assembly, Vienna, Austria, 2010 http://adsabs.harvard.edu/abs/2010EGUGA..12.5842J
|
[8] |
Mayer-Gürr T, Kurtenbach E, Eicker A. The Satellite-only Gravity Field Model ITG-Grace 2010s[EB/OL]. http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010, 2010
|
[9] |
Pail R, Bruinsma S, Migliaccio F, et al. First GOCE Gravity Field Models Derived by Three Different Approaches[J]. Journal of Geodesy, 2011, 85(11):819-843 doi: 10.1007/s00190-011-0467-x
|
[10] |
Yi Weiyong. An Alternative Computation of a Gravity Field Model from GOCE[J]. Advances in Space Research, 2012, 50(3):371-384 doi: 10.1016/j.asr.2012.04.018
|
[11] |
Schall J, Eicker A, Kusche J U R. The ITG-Goce02 Gravity Field Model from GOCE Orbit and Gradiometer Data Based on the Short Arc Approach[J]. Journal of Geodesy, 2014, 88(4):403-409 doi: 10.1007/s00190-014-0691-2
|
[12] |
Bruinsma S L, Förste C, Abrikosov O, et al. The New ESA Satellite-Only Gravity Field Model via the Direct Approach[J]. Geophysical Research Letters, 2013, 40(14):3607-3612 doi: 10.1002/grl.50716
|
[13] |
Farahani H H, Ditmar P, Klees R, et al. The Static Gravity Field Model DGM-1S from GRACE and GOCE Data:Computation, Validation and an Analysis of GOCE Mission's Added Value[J]. Journal of Geodesy, 2013, 87(9):843-867 doi: 10.1007/s00190-013-0650-3
|
[14] |
Yi Weiyong. The Earth's Gravity Field from GOCE[D]. München: Technische Universität München, 2011 https://portal.dnb.de/opac.htm?method=simpleSearch&cqlMode=true&query=idn%3D1021975567
|
[15] |
Pail R, Goiginger H, Schuh W D, et al. Combined Satellite Gravity Field Model GOCO01S Derived from GOCE and GRACE[J]. Geophysical Research Letters, 2010, 37(20):1-8 http://www.wenkuxiazai.com/doc/03005422482fb4daa58d4b59.html
|
[16] |
Koch K R, Brockmann J M, Schuh W D. Optimal Regularization for Geopotential Model GOCO02S by Monte Carlo Methods and Multi-scale Representation of Density Anomalies[J]. Journal of Geodesy, 2012, 86(8):647-660 doi: 10.1007/s00190-012-0546-7
|
[17] |
Mayer-Gürr T, Rieser D, Höck E, et al. The New Combined Satellite Only Model GOCO03S[C]. International Symposium on Gravity, Geoid and Height Systems, Venice, Italy, 2012 10.13140/RG.2.1.4688.6807
|
[18] |
Förste C, Bruinsma S L, Shako R, et al. A New Release of EIGEN-6: The Latest Combined Global Gravity Field Model Including LAGEOS, GRACE and GOCE Data from the Collaboration of GFZ Potsdam and GRGS Toulouse[C]. European Geosci-ences Union General Assembly, Vienna, Austria, 2012 http://adsabs.harvard.edu/abs/2012EGUGA..14.2821F
|
[19] |
Hirt C, Claessens S, Fecher T, et al. New Ultrahigh-resolution Picture of Earth's Gravity Field[J]. Geophysical Research Letters, 2013, 40(16):4279-4283 doi: 10.1002/grl.50838
|
[20] |
Kern M, Preimesberger T, Allesch M, et al. Outlier Detection Algorithms and Their Performance in GOCE Gravity Field Processing[J]. Journal of Geodesy, 2005, 78(9):509-519 doi: 10.1007/s00190-004-0419-9
|
[21] |
万晓云, 于锦海, 曾艳艳. GOCE引力梯度的频谱分析及滤波[J].地球物理学报, 2012, 55(9):2909-2916 doi: 10.6038/j.issn.0001-5733.2012.09.010
Wan Xiaoyun, Yu Jinhai, Zeng Yanyan. Frequency Analysis and Filtering Processing of Gravity Gradients Data from GOCE[J]. Chinese Journal of Geophysics, 2012, 55(9):2909-2916 doi: 10.6038/j.issn.0001-5733.2012.09.010
|
[22] |
Yu J H, Wan X Y. Recovery of the Gravity Field from GOCE Data by Using the Invariants of Gradient Tensor[J]. Science China:Earth Sciences, 2013, 56(7):1193-1199 doi: 10.1007/s11430-012-4427-y
|
[23] |
苏勇, 范东明, 游为.利用GOCE卫星数据确定全球重力场模型[J].物理学报, 2014, 63(9):99-102 https://wuxizazhi.cnki.net/lunwen-1017019214.html
Su Yong, Fan Dongming, You Wei. Gravity Field Model Calculated by Using the GOCE Data[J]. Acta Physica Sinica, 2014, 63(9):99-102 https://wuxizazhi.cnki.net/lunwen-1017019214.html
|
[24] |
Petrovskaya M S, Vershkov A N. Non-singular Expressions for the Gravity Gradients in the Local North-oriented and Orbital Reference Frames[J]. Journal of Geodesy, 2006, 80(3):117-127 doi: 10.1007/s00190-006-0031-2
|
[25] |
Koch K R, Kusche J. Regularization of Geopotential Determination from Satellite Data by Variance Components[J]. Journal of Geodesy, 2002, 76(5):259-268 doi: 10.1007/s00190-002-0245-x
|
[26] |
Kusche J, Klees R. Regularization of Gravity Field Estimation from Satellite Gravity Gradients[J]. Journal of Geodesy, 2002, 76(6):359-368 doi: 10.1007/s00190-002-0257-6
|
[27] |
Kusche J. Noise Variance Estimation and Optimal Weight Determination for GOCE Gravity Recovery[J]. Advances in Geosciences, 2003(1):81-85 https://hal.archives-ouvertes.fr/hal-00296766/document
|
[28] |
Tsoulis D, Patlakis K. A Spectral Assessment Review of Current Satellite-Only and Combined Earth Gravity Models[J]. Reviews of Geophysics, 2013, 51(2):186-243 doi: 10.1002/rog.20012
|
[1] | HUANG Motao, OUYANG Yongzhong, BIAN Shaofeng, LI Shanshan, LI Mingsan, LU Xiuping, WANG Weiping, DONG Chao, TANG Minqiang, HONG Lidan, HOU Guangchao. Analysis and Reflections on the Development of Underwater Gravity-Aided Inertial Navigation Technology in the United States and Russia[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 1977-1991. DOI: 10.13203/j.whugis20240228 |
[2] | LI Qingquan, CHEN Ruizhe, TU Wei, CHEN Zhipeng, ZHANG Bochen, YAN Aiguo, YIN Pengcheng. Real-Time Vision-Based Deformation Measurement of Long-Span Bridge with Inertial Sensors[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1834-1843. DOI: 10.13203/j.whugis20230006 |
[3] | WU Yanxiong, TENG Yuntian, WU Qiong, XU Xing, ZHANG Bing. Error Correction Model and Uncertainty Analysis of the Shipborne Absolute Gravity Measurement System[J]. Geomatics and Information Science of Wuhan University, 2022, 47(4): 492-500. DOI: 10.13203/j.whugis20190412 |
[4] | ZHA Feng, HE Hongyang, LI Zhiwei, LI Jingshu. A SINS Initial Alignment Method Using Improved Parameter Identification[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 974-979. DOI: 10.13203/j.whugis20180312 |
[5] | GUAN Bin, SUN Zhongmiao, WU Fumei, LIU Xiaogang. Influence of Horizontal Disturbing Gravity on Position Error in Inertial Navigation Systems[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1474-1481. DOI: 10.13203/j.whugis20160006 |
[6] | QIN Fangjun, LI An, XU Jiangning. Analysis of Errors of Rotating Modulation INS Effected by Angular Motion of Vehicle[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 831-833. |
[7] | QIN Fangjun, XU Jiangning, LI An. A New Calculative Method for Gyro-Free Inertial Navigation System Using 9Accelerometers[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 278-281. |
[8] | OUYANG Yongzhong, LU Xiuping, HUANG Motao, ZHAI Guojun. An Integrated Method for Compensating the Systematic Errors of Marine and Airborne Measurements from L&R Gravimeter[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5): 625-629. |
[9] | JIN Jihang, BIAN Shaofeng. Analysis of Inertial Navigation System Positioning Error Caused by Gravity Disturbance[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 30-32. |
[10] | YANG Tao, WANG Wei, ZHU Zhiqin. Analysis and Verification of Time Synchronization Error in GPS/SINS Integrated System[J]. Geomatics and Information Science of Wuhan University, 2009, 34(10): 1181-1184. |