Citation: | SU Yong, FAN Dongming, PU Xinggang, YOU Wei, XIAO Dongsheng, YU Bing. New Static Gravity Field Model SWJTU-GOGR01S Derived from GOCE Data and GRACE Normal Equation[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 457-463. DOI: 10.13203/j.whugis20150100 |
[1] |
Drinkwater M R, Haagmans R, Muzi D, et al. The GOCE Gravity Mission: ESA's First Core Earth Explorer[C]. The 3th International GOCE User Workshop, Frascati, Italy, 2006 https://www.researchgate.net/publication/284482935_The_GOCE_gravity_mission_ESA'a_first_core_Earth_explorer
|
[2] |
Tapley B D, Bettadpur S, Watkins M, et al. The Gravity Recovery and Climate Experiment:Mission Overview and Early Results[J]. Geophysical Research Letters, 2004, 31(9):1-8 https://www.researchgate.net/profile/Christoph_Reigber/publication/232095595_The_Gravity_Recovery_and_Climate_Experiment_Mission_overview_and_early_results/links/00b4951860399b7941000000/The-Gravity-Recovery-and-Climate-Experiment-Mission-overview-and-early-results.pdf
|
[3] |
Bingham R J, Knudsen P, Andersen O, et al. An Initial Estimate of the North Atlantic Steady-State Geostrophic Circulation from GOCE[J]. Geophysical Research Letters, 2011, 38(1):1-10 http://adsabs.harvard.edu/abs/2011GeoRL..38.1606B
|
[4] |
Garcia R F, Bruinsma S, Lognonné P, et al. GOCE:The First Seismometer in Orbit Around the Earth[J]. Geophysical Research Letters, 2013, 40(5):1015-1020 doi: 10.1002/grl.50205
|
[5] |
Tapley B, Ries J, Bettadpur S, et al. The GGM03 Mean Earth Gravity Model from GRACE[C]. Fall Meeting of American Geophysical Union, United States, 2007 http://adsabs.harvard.edu/abs/2007AGUFM.G42A..03T
|
[6] |
Förste C, Flechtner F, Schmidt R, et al. EIGEN-GL05C: A New Global Combined High-Resolution GRACE-based Gravity Field Model of the GFZ-GRGS Cooperation[C]. European Geosciences Union General Assembly, Vienna, Austria, 2008 http://gfzpublic.gfz-potsdam.de/pubman/faces/viewItemOverviewPage.jsp?itemId=escidoc:236888
|
[7] |
Jäggi A, Prange L, Meyer U, et al. Gravity Field Determination at AIUB: From Annual to Multi-annual Solutions[C]. European Geosciences Union General Assembly, Vienna, Austria, 2010 http://adsabs.harvard.edu/abs/2010EGUGA..12.5842J
|
[8] |
Mayer-Gürr T, Kurtenbach E, Eicker A. The Satellite-only Gravity Field Model ITG-Grace 2010s[EB/OL]. http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010, 2010
|
[9] |
Pail R, Bruinsma S, Migliaccio F, et al. First GOCE Gravity Field Models Derived by Three Different Approaches[J]. Journal of Geodesy, 2011, 85(11):819-843 doi: 10.1007/s00190-011-0467-x
|
[10] |
Yi Weiyong. An Alternative Computation of a Gravity Field Model from GOCE[J]. Advances in Space Research, 2012, 50(3):371-384 doi: 10.1016/j.asr.2012.04.018
|
[11] |
Schall J, Eicker A, Kusche J U R. The ITG-Goce02 Gravity Field Model from GOCE Orbit and Gradiometer Data Based on the Short Arc Approach[J]. Journal of Geodesy, 2014, 88(4):403-409 doi: 10.1007/s00190-014-0691-2
|
[12] |
Bruinsma S L, Förste C, Abrikosov O, et al. The New ESA Satellite-Only Gravity Field Model via the Direct Approach[J]. Geophysical Research Letters, 2013, 40(14):3607-3612 doi: 10.1002/grl.50716
|
[13] |
Farahani H H, Ditmar P, Klees R, et al. The Static Gravity Field Model DGM-1S from GRACE and GOCE Data:Computation, Validation and an Analysis of GOCE Mission's Added Value[J]. Journal of Geodesy, 2013, 87(9):843-867 doi: 10.1007/s00190-013-0650-3
|
[14] |
Yi Weiyong. The Earth's Gravity Field from GOCE[D]. München: Technische Universität München, 2011 https://portal.dnb.de/opac.htm?method=simpleSearch&cqlMode=true&query=idn%3D1021975567
|
[15] |
Pail R, Goiginger H, Schuh W D, et al. Combined Satellite Gravity Field Model GOCO01S Derived from GOCE and GRACE[J]. Geophysical Research Letters, 2010, 37(20):1-8 http://www.wenkuxiazai.com/doc/03005422482fb4daa58d4b59.html
|
[16] |
Koch K R, Brockmann J M, Schuh W D. Optimal Regularization for Geopotential Model GOCO02S by Monte Carlo Methods and Multi-scale Representation of Density Anomalies[J]. Journal of Geodesy, 2012, 86(8):647-660 doi: 10.1007/s00190-012-0546-7
|
[17] |
Mayer-Gürr T, Rieser D, Höck E, et al. The New Combined Satellite Only Model GOCO03S[C]. International Symposium on Gravity, Geoid and Height Systems, Venice, Italy, 2012 10.13140/RG.2.1.4688.6807
|
[18] |
Förste C, Bruinsma S L, Shako R, et al. A New Release of EIGEN-6: The Latest Combined Global Gravity Field Model Including LAGEOS, GRACE and GOCE Data from the Collaboration of GFZ Potsdam and GRGS Toulouse[C]. European Geosci-ences Union General Assembly, Vienna, Austria, 2012 http://adsabs.harvard.edu/abs/2012EGUGA..14.2821F
|
[19] |
Hirt C, Claessens S, Fecher T, et al. New Ultrahigh-resolution Picture of Earth's Gravity Field[J]. Geophysical Research Letters, 2013, 40(16):4279-4283 doi: 10.1002/grl.50838
|
[20] |
Kern M, Preimesberger T, Allesch M, et al. Outlier Detection Algorithms and Their Performance in GOCE Gravity Field Processing[J]. Journal of Geodesy, 2005, 78(9):509-519 doi: 10.1007/s00190-004-0419-9
|
[21] |
万晓云, 于锦海, 曾艳艳. GOCE引力梯度的频谱分析及滤波[J].地球物理学报, 2012, 55(9):2909-2916 doi: 10.6038/j.issn.0001-5733.2012.09.010
Wan Xiaoyun, Yu Jinhai, Zeng Yanyan. Frequency Analysis and Filtering Processing of Gravity Gradients Data from GOCE[J]. Chinese Journal of Geophysics, 2012, 55(9):2909-2916 doi: 10.6038/j.issn.0001-5733.2012.09.010
|
[22] |
Yu J H, Wan X Y. Recovery of the Gravity Field from GOCE Data by Using the Invariants of Gradient Tensor[J]. Science China:Earth Sciences, 2013, 56(7):1193-1199 doi: 10.1007/s11430-012-4427-y
|
[23] |
苏勇, 范东明, 游为.利用GOCE卫星数据确定全球重力场模型[J].物理学报, 2014, 63(9):99-102 https://wuxizazhi.cnki.net/lunwen-1017019214.html
Su Yong, Fan Dongming, You Wei. Gravity Field Model Calculated by Using the GOCE Data[J]. Acta Physica Sinica, 2014, 63(9):99-102 https://wuxizazhi.cnki.net/lunwen-1017019214.html
|
[24] |
Petrovskaya M S, Vershkov A N. Non-singular Expressions for the Gravity Gradients in the Local North-oriented and Orbital Reference Frames[J]. Journal of Geodesy, 2006, 80(3):117-127 doi: 10.1007/s00190-006-0031-2
|
[25] |
Koch K R, Kusche J. Regularization of Geopotential Determination from Satellite Data by Variance Components[J]. Journal of Geodesy, 2002, 76(5):259-268 doi: 10.1007/s00190-002-0245-x
|
[26] |
Kusche J, Klees R. Regularization of Gravity Field Estimation from Satellite Gravity Gradients[J]. Journal of Geodesy, 2002, 76(6):359-368 doi: 10.1007/s00190-002-0257-6
|
[27] |
Kusche J. Noise Variance Estimation and Optimal Weight Determination for GOCE Gravity Recovery[J]. Advances in Geosciences, 2003(1):81-85 https://hal.archives-ouvertes.fr/hal-00296766/document
|
[28] |
Tsoulis D, Patlakis K. A Spectral Assessment Review of Current Satellite-Only and Combined Earth Gravity Models[J]. Reviews of Geophysics, 2013, 51(2):186-243 doi: 10.1002/rog.20012
|
[1] | JI Kunpu, SHEN Yunzhong, CHEN Qiujie. An Adaptive Regularized Filtering Approach for Processing GRACE Time-Variable Gravity Field Models[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 2101-2112. DOI: 10.13203/j.whugis20240316 |
[2] | LIU Meng, WANG Zheng-tao. Downward Continuation Iterative Regularization Solution Based on Quasi Optimal Regularization Factor Set[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230127 |
[3] | WU Fengfeng, HUANG Haijun, REN Qingyang, FAN Wenyou, CHEN Jie, PAN Xiong. Analysis of Downward Continuation Model of Airborne Gravity Based on Comprehensive Semi-parametric Kernel Estimation and Regularization Method[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1563-1569. DOI: 10.13203/j.whugis20180491 |
[4] | XU Xinqiang, ZHAO Jun. A Multi-Parameter Regularization Method in Downward Continuation for Airborne Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 956-963, 973. DOI: 10.13203/j.whugis20180335 |
[5] | JI Kunpu, SHEN Yunzhong. Unbiased Estimation of Unit Weight Variance by TSVD Regularization[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 626-632. DOI: 10.13203/j.whugis20180270 |
[6] | SUN Wen, WU Xiaoping, WANG Qingbin, LIU Xiaogang, ZHU Zhida. Normalized Collocation Based on Variance Component Estimate and Its Application in Multi-source Gravity Data Fusion[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1087-1092. DOI: 10.13203/j.whugis20140159 |
[7] | ZENG Xiaoniu, LI Xihai, LIU Zhigang, YANG Xiaojun, LIU Daizhi. Regularization Method for Reduction to the Pole and Components Transformation of Magnetic Anomaly at Low Latitudes[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 388-394. DOI: 10.13203/j.whugis20140342 |
[8] | GU Yongwei, GUI Qingming, HAN Songhui, WANG Jinhui. Regularization by Grouping Correction in Downward Continuation of Airborne Gravity[J]. Geomatics and Information Science of Wuhan University, 2013, 38(6): 720-724. |
[9] | GU Yongwei, GUI Qingming, BIAN Shaofeng, GUO Jianfeng. Comparison Between Tikhonov Regularization and Truncated SVD in Geophysics[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 238-241. |
[10] | XU Tianhe, YANG Yuanxi. Robust Tikhonov Regularization Method and Its Applications[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 719-722. |