SU Yong, FAN Dongming, PU Xinggang, YOU Wei, XIAO Dongsheng, YU Bing. New Static Gravity Field Model SWJTU-GOGR01S Derived from GOCE Data and GRACE Normal Equation[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 457-463. DOI: 10.13203/j.whugis20150100
Citation: SU Yong, FAN Dongming, PU Xinggang, YOU Wei, XIAO Dongsheng, YU Bing. New Static Gravity Field Model SWJTU-GOGR01S Derived from GOCE Data and GRACE Normal Equation[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 457-463. DOI: 10.13203/j.whugis20150100

New Static Gravity Field Model SWJTU-GOGR01S Derived from GOCE Data and GRACE Normal Equation

Funds: 

The National Natural Science Foundation of China 41574018

The National Natural Science Foundation of China 41404018

More Information
  • Author Bio:

    SU Yong, PhD, lecturer, specializes in determination of static and time-variation Earth's gravitational field model from satellite gravity measurement and global mass distribution monitoring. E-mail: suyongme@foxmail.com

  • Received Date: May 25, 2016
  • Published Date: March 04, 2018
  • Global static gravitational field determined by GOCE and GRACE satellite data has become a hotspot in current research of geodesy. In this paper, a satellite-only global static gravity field model entitled SWJTU-GOGR01S up to degree and order 210 is recovered based on 3 years of GOCE gravity gradient data and ITG-GRACE2010S model's normal equation from 7 years GPS and K-band rang rate data. Four high precision GOCE gradiometer components (Vxx, Vyy, Vzz, Vxz) are filtered by the zero phase finite impulse band-pass digital filter, and then gradient observation equation is founded directly in gradiometer coordinates which avoids the loss of gradiometer component in accuracy in the conversion process. The optimal weight of the combination result of GOCE and GRACE data is determined by variance component estimation and the GOCE data polar gaps is dealt with the Kaula regularization method. Comparing the internal and external precision of SWJTU-GOGR01S with EIGEN-6C2 and GPS leveling data of North America, the results show that the geoid error and cumulative error of the SWJTU-GOGR01S model with degree and order 210 are 1.3 cm and 5.7 cm respectively. Compared with the fourth generation direct approach and time-wise approach models released by ESA, GOCO02S and GOCO03S model, the accuracy of the model SWJTU-GOGR01S is verified basically consistent with the model TIM-R4. The precision of SWJTU-GOGR01S model is also better than GOCO02S and GOCO03S model.
  • [1]
    Drinkwater M R, Haagmans R, Muzi D, et al. The GOCE Gravity Mission: ESA's First Core Earth Explorer[C]. The 3th International GOCE User Workshop, Frascati, Italy, 2006 https://www.researchgate.net/publication/284482935_The_GOCE_gravity_mission_ESA'a_first_core_Earth_explorer
    [2]
    [3]
    Bingham R J, Knudsen P, Andersen O, et al. An Initial Estimate of the North Atlantic Steady-State Geostrophic Circulation from GOCE[J]. Geophysical Research Letters, 2011, 38(1):1-10 http://adsabs.harvard.edu/abs/2011GeoRL..38.1606B
    [4]
    Garcia R F, Bruinsma S, Lognonné P, et al. GOCE:The First Seismometer in Orbit Around the Earth[J]. Geophysical Research Letters, 2013, 40(5):1015-1020 doi: 10.1002/grl.50205
    [5]
    Tapley B, Ries J, Bettadpur S, et al. The GGM03 Mean Earth Gravity Model from GRACE[C]. Fall Meeting of American Geophysical Union, United States, 2007 http://adsabs.harvard.edu/abs/2007AGUFM.G42A..03T
    [6]
    Förste C, Flechtner F, Schmidt R, et al. EIGEN-GL05C: A New Global Combined High-Resolution GRACE-based Gravity Field Model of the GFZ-GRGS Cooperation[C]. European Geosciences Union General Assembly, Vienna, Austria, 2008 http://gfzpublic.gfz-potsdam.de/pubman/faces/viewItemOverviewPage.jsp?itemId=escidoc:236888
    [7]
    Jäggi A, Prange L, Meyer U, et al. Gravity Field Determination at AIUB: From Annual to Multi-annual Solutions[C]. European Geosciences Union General Assembly, Vienna, Austria, 2010 http://adsabs.harvard.edu/abs/2010EGUGA..12.5842J
    [8]
    Mayer-Gürr T, Kurtenbach E, Eicker A. The Satellite-only Gravity Field Model ITG-Grace 2010s[EB/OL]. http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010, 2010
    [9]
    Pail R, Bruinsma S, Migliaccio F, et al. First GOCE Gravity Field Models Derived by Three Different Approaches[J]. Journal of Geodesy, 2011, 85(11):819-843 doi: 10.1007/s00190-011-0467-x
    [10]
    Yi Weiyong. An Alternative Computation of a Gravity Field Model from GOCE[J]. Advances in Space Research, 2012, 50(3):371-384 doi: 10.1016/j.asr.2012.04.018
    [11]
    Schall J, Eicker A, Kusche J U R. The ITG-Goce02 Gravity Field Model from GOCE Orbit and Gradiometer Data Based on the Short Arc Approach[J]. Journal of Geodesy, 2014, 88(4):403-409 doi: 10.1007/s00190-014-0691-2
    [12]
    Bruinsma S L, Förste C, Abrikosov O, et al. The New ESA Satellite-Only Gravity Field Model via the Direct Approach[J]. Geophysical Research Letters, 2013, 40(14):3607-3612 doi: 10.1002/grl.50716
    [13]
    Farahani H H, Ditmar P, Klees R, et al. The Static Gravity Field Model DGM-1S from GRACE and GOCE Data:Computation, Validation and an Analysis of GOCE Mission's Added Value[J]. Journal of Geodesy, 2013, 87(9):843-867 doi: 10.1007/s00190-013-0650-3
    [14]
    Yi Weiyong. The Earth's Gravity Field from GOCE[D]. München: Technische Universität München, 2011 https://portal.dnb.de/opac.htm?method=simpleSearch&cqlMode=true&query=idn%3D1021975567
    [15]
    Pail R, Goiginger H, Schuh W D, et al. Combined Satellite Gravity Field Model GOCO01S Derived from GOCE and GRACE[J]. Geophysical Research Letters, 2010, 37(20):1-8 http://www.wenkuxiazai.com/doc/03005422482fb4daa58d4b59.html
    [16]
    Koch K R, Brockmann J M, Schuh W D. Optimal Regularization for Geopotential Model GOCO02S by Monte Carlo Methods and Multi-scale Representation of Density Anomalies[J]. Journal of Geodesy, 2012, 86(8):647-660 doi: 10.1007/s00190-012-0546-7
    [17]
    Mayer-Gürr T, Rieser D, Höck E, et al. The New Combined Satellite Only Model GOCO03S[C]. International Symposium on Gravity, Geoid and Height Systems, Venice, Italy, 2012 10.13140/RG.2.1.4688.6807
    [18]
    Förste C, Bruinsma S L, Shako R, et al. A New Release of EIGEN-6: The Latest Combined Global Gravity Field Model Including LAGEOS, GRACE and GOCE Data from the Collaboration of GFZ Potsdam and GRGS Toulouse[C]. European Geosci-ences Union General Assembly, Vienna, Austria, 2012 http://adsabs.harvard.edu/abs/2012EGUGA..14.2821F
    [19]
    Hirt C, Claessens S, Fecher T, et al. New Ultrahigh-resolution Picture of Earth's Gravity Field[J]. Geophysical Research Letters, 2013, 40(16):4279-4283 doi: 10.1002/grl.50838
    [20]
    Kern M, Preimesberger T, Allesch M, et al. Outlier Detection Algorithms and Their Performance in GOCE Gravity Field Processing[J]. Journal of Geodesy, 2005, 78(9):509-519 doi: 10.1007/s00190-004-0419-9
    [21]
    万晓云, 于锦海, 曾艳艳. GOCE引力梯度的频谱分析及滤波[J].地球物理学报, 2012, 55(9):2909-2916 doi: 10.6038/j.issn.0001-5733.2012.09.010

    Wan Xiaoyun, Yu Jinhai, Zeng Yanyan. Frequency Analysis and Filtering Processing of Gravity Gradients Data from GOCE[J]. Chinese Journal of Geophysics, 2012, 55(9):2909-2916 doi: 10.6038/j.issn.0001-5733.2012.09.010
    [22]
    Yu J H, Wan X Y. Recovery of the Gravity Field from GOCE Data by Using the Invariants of Gradient Tensor[J]. Science China:Earth Sciences, 2013, 56(7):1193-1199 doi: 10.1007/s11430-012-4427-y
    [23]
    苏勇, 范东明, 游为.利用GOCE卫星数据确定全球重力场模型[J].物理学报, 2014, 63(9):99-102 https://wuxizazhi.cnki.net/lunwen-1017019214.html

    Su Yong, Fan Dongming, You Wei. Gravity Field Model Calculated by Using the GOCE Data[J]. Acta Physica Sinica, 2014, 63(9):99-102 https://wuxizazhi.cnki.net/lunwen-1017019214.html
    [24]
    Petrovskaya M S, Vershkov A N. Non-singular Expressions for the Gravity Gradients in the Local North-oriented and Orbital Reference Frames[J]. Journal of Geodesy, 2006, 80(3):117-127 doi: 10.1007/s00190-006-0031-2
    [25]
    Koch K R, Kusche J. Regularization of Geopotential Determination from Satellite Data by Variance Components[J]. Journal of Geodesy, 2002, 76(5):259-268 doi: 10.1007/s00190-002-0245-x
    [26]
    Kusche J, Klees R. Regularization of Gravity Field Estimation from Satellite Gravity Gradients[J]. Journal of Geodesy, 2002, 76(6):359-368 doi: 10.1007/s00190-002-0257-6
    [27]
    Kusche J. Noise Variance Estimation and Optimal Weight Determination for GOCE Gravity Recovery[J]. Advances in Geosciences, 2003(1):81-85 https://hal.archives-ouvertes.fr/hal-00296766/document
    [28]
    Tsoulis D, Patlakis K. A Spectral Assessment Review of Current Satellite-Only and Combined Earth Gravity Models[J]. Reviews of Geophysics, 2013, 51(2):186-243 doi: 10.1002/rog.20012
  • Related Articles

    [1]JI Kunpu, SHEN Yunzhong, CHEN Qiujie. An Adaptive Regularized Filtering Approach for Processing GRACE Time-Variable Gravity Field Models[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 2101-2112. DOI: 10.13203/j.whugis20240316
    [2]LIU Meng, WANG Zheng-tao. Downward Continuation Iterative Regularization Solution Based on Quasi Optimal Regularization Factor Set[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230127
    [3]WU Fengfeng, HUANG Haijun, REN Qingyang, FAN Wenyou, CHEN Jie, PAN Xiong. Analysis of Downward Continuation Model of Airborne Gravity Based on Comprehensive Semi-parametric Kernel Estimation and Regularization Method[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1563-1569. DOI: 10.13203/j.whugis20180491
    [4]XU Xinqiang, ZHAO Jun. A Multi-Parameter Regularization Method in Downward Continuation for Airborne Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 956-963, 973. DOI: 10.13203/j.whugis20180335
    [5]JI Kunpu, SHEN Yunzhong. Unbiased Estimation of Unit Weight Variance by TSVD Regularization[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 626-632. DOI: 10.13203/j.whugis20180270
    [6]SUN Wen, WU Xiaoping, WANG Qingbin, LIU Xiaogang, ZHU Zhida. Normalized Collocation Based on Variance Component Estimate and Its Application in Multi-source Gravity Data Fusion[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1087-1092. DOI: 10.13203/j.whugis20140159
    [7]ZENG Xiaoniu, LI Xihai, LIU Zhigang, YANG Xiaojun, LIU Daizhi. Regularization Method for Reduction to the Pole and Components Transformation of Magnetic Anomaly at Low Latitudes[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 388-394. DOI: 10.13203/j.whugis20140342
    [8]GU Yongwei, GUI Qingming, HAN Songhui, WANG Jinhui. Regularization by Grouping Correction in Downward Continuation of Airborne Gravity[J]. Geomatics and Information Science of Wuhan University, 2013, 38(6): 720-724.
    [9]GU Yongwei, GUI Qingming, BIAN Shaofeng, GUO Jianfeng. Comparison Between Tikhonov Regularization and Truncated SVD in Geophysics[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 238-241.
    [10]XU Tianhe, YANG Yuanxi. Robust Tikhonov Regularization Method and Its Applications[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 719-722.
  • Cited by

    Periodical cited type(5)

    1. 穆庆禄,王长青,闫易浩,钟敏,冯伟,梁磊,朱紫彤. 不同指向模式下星载冷原子梯度仪对重力场解算精度的影响. 地球物理学报. 2024(07): 2528-2545 .
    2. 刘滔,钟波,李贤炮,谭江涛. GOCE卫星重力梯度数据反演重力场的滤波器设计与比较分析. 武汉大学学报(信息科学版). 2023(05): 694-701 .
    3. 朱广彬,常晓涛,瞿庆亮,周苗. 利用卫星引力梯度确定地球重力场的张量不变方法研究. 武汉大学学报(信息科学版). 2022(03): 334-340 .
    4. 罗志才,钟波,周浩,吴云龙. 利用卫星重力测量确定地球重力场模型的进展. 武汉大学学报(信息科学版). 2022(10): 1713-1727 .
    5. 陈鑑华,张兴福,陈秋杰,梁建青,沈云中. 融合GOCE和GRACE卫星数据的无约束重力场模型Tongji-GOGR2019S. 地球物理学报. 2020(09): 3251-3262 .

    Other cited types(1)

Catalog

    Article views (2406) PDF downloads (333) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return