ZHANG Jianting, ZHANG Limin. A Watershed Algorithm Combining Spectral and Texture Information for High Resolution Remote Sensing Image Segmentation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 449-455,467. DOI: 10.13203/j.whugis20150097
Citation: ZHANG Jianting, ZHANG Limin. A Watershed Algorithm Combining Spectral and Texture Information for High Resolution Remote Sensing Image Segmentation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 449-455,467. DOI: 10.13203/j.whugis20150097

A Watershed Algorithm Combining Spectral and Texture Information for High Resolution Remote Sensing Image Segmentation

Funds: 

The Taishan Scholar Special Foundation No.ts201511020

More Information
  • Author Bio:

    ZHANG Jianting, PhD, specializes in the theories of remote sensing image analysis and system simulation technology. E-mail:changjianting@hotmail.com

  • Corresponding author:

    ZHANG Limin, PhD, professor. E-mail:iamzlm@163.com

  • Received Date: July 20, 2015
  • Published Date: April 04, 2017
  • High resolution remote sensing image segmentation methods that consider only the spectral information in the region growing process often lead to over segmentation and low boundary precision. To overcome that, a watershed transform algorithm which combines spectral information and texture information is proposed. At first, the spectral intensity gradient and the texture gradient have to be extracted from the input image. For that purpose, a new bilateral filtering model is introduced. This edge preserving algorithm can remove noise of images. Meanwhile, it can also remove texture from images by using a local smoothing scale parameter. By adapting this filtering algorithm on the original image and the Gabor texture feature images, the spectral information and texture information are extracted separately. Then with edge detection algorithm, the spectral intensity gradient and texture gradient are obtained. Finally a gradient fusion strategy by morphological dilation and watershed transform are performed in succession. Experiments are carried out on three high resolution color remote sensing images. Compared with JSEG and multi-resolution segmentation methods, the proposed method has a higher boundary precision and can reduce the over segmentation and under segmentation effects.
  • [1]
    Li D, Zhang G, Wu Z, et al. An Edge Embedded Marker-based Watershed Algorithm for High Spatial Resolution Remote Sensing Image Segmentation[J]. Image Processing, IEEE Transactions on, 2010, 19(10):2 781-2 787 https://www.researchgate.net/publication/224135528_An_Edge_Embedded_Marker-Based_Watershed_Algorithm_for_High_Spatial_Resolution_Remote_Sensing_Image_Segmentation
    [2]
    Benz U C, Hofmann P, Willhauck G, et al. Multi-resolution, Object-oriented Fuzzy Analysis of Remote Sensing Data for GIS-ready Information[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2004, 58(3-4):239-258 doi: 10.1016/j.isprsjprs.2003.10.002
    [3]
    Johnson B, Xie Z. Unsupervised Image Segmentation Evaluation and Refinement Using a Multi-scale Approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(4):473-483 doi: 10.1016/j.isprsjprs.2011.02.006
    [4]
    Beghdadi A, Larabi M C, Bouzerdoum A, et al. A Survey of Perceptual Image Processing Methods[J]. Signal Processing:Image Communication, 2013, 28(8):811-831 doi: 10.1016/j.image.2013.06.003
    [5]
    谭玉敏, 槐建柱, 唐中实. 一种融合边缘信息的面向对象遥感图像分割方法[J]. 光谱学与光谱分析, 2010, 30(6):1 624-1 627 http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201006041.htm

    Tan Yumin, Huai Jianzhu, Tang Zhongshi. An Object-oriented Remote Sensing Image Segmentation Approach Based on Edge Detection[J]. Spectroscopy and Spectral Analysis, 2010, 30(6):1 624-1 627 http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201006041.htm
    [6]
    Ilea D E, Whelan P F. Image Segmentation Based on the Integration of Colour-texture Descriptors-A Review[J]. Pattern Recognition, 2011, 44(10):2 479-2 501 https://www.researchgate.net/profile/Paul_Whelan/publication/220602316_Image_segmentation_based_on_the_integration_of_colourtexture_descriptors_-_A_review/links/0912f51079c2db3fa5000000.pdf
    [7]
    陈启浩, 刘修国, 陈奇. 一种综合多特征的全极化SAR图像分割方法[J]. 武汉大学学报·信息科学版, 2014, 39(12):1 419-1 424 http://ch.whu.edu.cn/CN/abstract/abstract3134.shtml

    Chen Qihao, Liu Xiuguo, Chen Qi. An Intergrated Multi-Feature Segmentation Method of Polarimetric SAR Images[J]. Geomatics and Information Science of Wuhan University, 2014, 39(12):1 419-1 424 http://ch.whu.edu.cn/CN/abstract/abstract3134.shtml
    [8]
    Yin S J, Chen X L. Reducing Boundary Effects in Image Texture Segmentation Using Weighted Semivariogram[C]. GeoComputation, Ireland, 2007
    [9]
    Soille P. Morphological Image Analysis:Principles and Applications[M]. New York:Springer-verlag, 2003
    [10]
    Jain P, Tyagi V. A Survey of Edge-preserving Image Denoising Methods[J]. Information Systems Frontiers, 2014, 1-12 doi: 10.1007/s10796-014-9527-0
    [11]
    Rousseeuw P J, Leroy A M. Robust Regression and Outlier Detection[M]. England:Wiley, 1987
    [12]
    Tsiotsios C, Petrou M. On the Choice of the Parameters for Anisotropic Diffusion in Image Processing[J]. Pattern Recognition, 2013, 46(5):1 369-1 381 doi: 10.1016/j.patcog.2012.11.012
    [13]
    Nikolova M. Markovian Reconstruction Using a GNC Approach[J]. Image Processing, IEEE Transactions on, 1999, 8(9):1 204-1 220 doi: 10.1109/83.784433
    [14]
    Black M J, Sapiro G, Marimont D H, et al. Robust Anisotropic Diffusion[J]. Image Processing, IEEE Transactions on, 1998, 7(3):421-432 doi: 10.1109/83.661192
    [15]
    Liu Y, Goto S, Ikenaga T. A Robust Algorithm for Text Detection in Color Images[C]. Eighth International Conference on Document Analysis and Recognition, Seoul,2005
    [16]
    Clausi D A, Jernigan M. Designing Gabor Filters for Optimal Texture Separability[J]. Pattern Recognition, 2000, 33(11):1 835-1 849 doi: 10.1016/S0031-3203(99)00181-8
    [17]
    Nava R, Escalante-Ramírez B, Cristóbal G. A Comparison Study of Gabor and Log-Gabor Wavelets for Texture Segmentation[C]. International Symposium on Image and Signal Processing and Analysis. IEEE, Dubrovnik, 2011
    [18]
    Corcoran P, Winstanley A, Mooney P. Complementary Texture and Intensity Gradient Estimation and Fusion for Watershed Segmentation[J]. Machine Vision and Applications, 2011, 22(6):1 027-1 045 doi: 10.1007/s00138-010-0310-z
    [19]
    Deng Y, Manjunath B. Unsupervised Segmentation of Color-texture Regions in Images and Video[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2001, 23(8):800-810 https://www.researchgate.net/publication/285641435_Unsupervised_Segmentation_of_Color-Texture_Regions_in_Images_and_video
    [20]
    Achanta R, Shaji A, Smith K, et al. SLIC Superpixels Compared to State-of-the-art Superpixel Methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2 274-2 282 doi: 10.1109/TPAMI.2012.120
  • Cited by

    Periodical cited type(6)

    1. 何伟俊,万忠平. 基于改进Delaunay三角剖分算法的房屋面群自动综合. 地理空间信息. 2025(03): 114-117 .
    2. 陈占龙,鲁谢春,徐永洋. 基于图顶点深度聚类的建筑物合并方法. 测绘学报. 2024(04): 736-749 .
    3. 李安平,翟仁健,殷吉崇,朱丽,齐林君. 顾及空间结构关系的居民地自动合并方法. 武汉大学学报(信息科学版). 2024(09): 1723-1733 .
    4. 赵黄斌. 无人机遥感技术航测地物信息应用初步研究. 中国高新科技. 2024(17): 101-104 .
    5. 李姗迟,彭逸桓. 海域使用立体分层数据模型构建与应用. 海洋开发与管理. 2024(08): 13-19 .
    6. 黄玉兰,郭庆胜,王慧慧,王勇. 基于顶点线性插值的建筑物群聚合的简易方法. 地理空间信息. 2022(02): 15-21 .

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return