BAO Rui, XUE Zhaohui, ZHANG Xiangyuan, SU Hongjun, DU Peijun. Classification Merged with Clustering and Context for Hyperspectral Imagery[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 890-896. DOI: 10.13203/j.whugis20150043
Citation: BAO Rui, XUE Zhaohui, ZHANG Xiangyuan, SU Hongjun, DU Peijun. Classification Merged with Clustering and Context for Hyperspectral Imagery[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 890-896. DOI: 10.13203/j.whugis20150043

Classification Merged with Clustering and Context for Hyperspectral Imagery

Funds: 

The Jiangsu province Science Fund for Distinguished Young Scholars BK2012018

the National Key Scientific Instrument and Equipment Development Project 012YQ050250

More Information
  • Author Bio:

    BAO Rui, master, specializes in hyperspectral imagery. E-mail:baoruijiayou@163.com

  • Corresponding author:

    DU Peijun, PhD, professor. E-mail:dupjrs@126.com

  • Received Date: September 17, 2015
  • Published Date: July 04, 2017
  • The traditional pixel-wised classification methods for hyperspectral image (HIS) only consider spectral information while ignoring the spatial information, resulting in a big limit of classification performance. Clustering which could assemble pixels similar in spectral features into spatial adjacent clusters, thus effectively express similarity and spatial correlation of adjacent pixels. In order to take full advantages of spatial correlation, this paper explore a spectral-spatial classification method for HSI merged with clustering and context. Firstly, under condition of different feature extraction(MNF, ICA and PCA), different clustering methods(k-means, ISODATA and FCM) are used in hidden markov random field to obtain optimized segmentation map containing context features; secondly, the regions in the segmentation map are labeled by using a four-connected neighborhood labeling method to generate image objects, and a majority voting method is used to classify the objects based on the initial classification map derived from support vector machine (SVM) optimized by particle swarm optimization (PSO). Finally, a Chamfer neighborhood filtering technique is used to regularize the classification map, which partially reduces the noise. This method utilizing spatial information from clustering and introducing context features from HMRF takes advantage of supervised classification and unsupervised classification to gain noise reduction, high-accuracy and high homogeneity, which makes up for the inadequacy of the classification based only on spectral information. Experiment on ROSIS data set and AVIRIS data set respectively illustrate that the method can obtain better performance in terms of classification. The overall accuracy of ROSIS data set reaches to 98.53%, 5.01% higher than that obtained by SVM. Meanwhile the overall accuracy of AVIRIS data set climbs to 91.97%, 7.01% higher than SVM result. We also find that different feature extraction and different clustering will influence the spectral-spatial method using HMRF with edge-protection.
  • [1]
    童庆禧, 张兵, 郑兰芬.高光谱遥感:原理、技术与应用[M].北京:高等教育出版社, 2006

    Tong Qingxi, Zhang Bin, Zheng Lanfen. Hyperspectral Remote Sensing:the Principle, Technology and Application[M]. Beijing:Higher Education Press, 2006
    [2]
    Plaza A, Benediktsson J A, Boardman J W, et al. Recent Advances in Techniques for Hyperspectral Image Processing[J]. Remote Sens Environ, 2009, 113:S110-S122 doi: 10.1016/j.rse.2007.07.028
    [3]
    Bioucas-Dias J M, Plaza A, Camps-Valls G, et al. Hyperspectral Remote Sensing Data Analysis and Future Challenges[J]. IEEE Geoscience & Remote Sensing Magazine, 2013, 1(2):6-36 http://www.academia.edu/14028682/Hyperspectral_Remote_Sensing_Data_Analysis_and_Future_Challenges
    [4]
    Camps-Valls G, Tuia D, Bruzzone L, et al. Advances in Hyperspectral Image Classification[J]. IEEE Signal Processing Magazine, 2014, 31(1):45-54 doi: 10.1109/MSP.2013.2279179
    [5]
    Pal M and Mather P M. Support Vector Machines for Classification in Remote Sensing[J]. International Journal of Remote Sensing, 2005, 26(5):1007-1011 doi: 10.1080/01431160512331314083
    [6]
    Moser G, Serpico S B. Combining Support Vector Machines and Markov Random Fields in an Integrated Framework for Contextual Image Classification[J].IEEE Transactions on Geoscience & Remote Sensing, 2012, 50(5):1-19 https://www.researchgate.net/publication/235890131_Combining_Support_Vector_Machines_and_Markov_Random_Fields_in_an_Integrated_Framework_for_Contextual_Image_Classification
    [7]
    Fauvel M, Tarabalka Y, Benediktsson J A, et al. Advances in Spectral-spatial Classification of Hyperspectral Images[J]. Proceedings of the IEEE, 2013, 101(3):652-675 doi: 10.1109/JPROC.2012.2197589
    [8]
    Plaza A, Martinez P, Perez R, et al. A New Approach to Mixed Pixel Classification of Hyperspectral Imagery based on Extended Morphological Profiles[J]. Pattern Recognition, 2004, 37(6):1097-1116 doi: 10.1016/j.patcog.2004.01.006
    [9]
    Borhani M, Ghassemian H. Hyperspectral Image Classification Based on Spectral-spatial Features Using Probabilistic SVM and Locally Weighted Markov Random Fields[C]. Intelligent Systems (ICIS), Iran, 2014
    [10]
    Tarabalka Y, Benediktsson J A, Chanussot J. Spectral-spatial Classification of Hyperspectral Imagery Based on Partitional Clustering Techniques[J].IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8):2973-2987 doi: 10.1109/TGRS.2009.2016214
    [11]
    刘国英, 茅力非, 王雷光, 等.基于小波域分层Markov模型的纹理分割[J].武汉大学学报·信息科学版, 2009, 34(5):531-534 http://ch.whu.edu.cn/CN/abstract/abstract1248.shtml

    Liu Guoying, Mao Lifei, Wang Leiguang, et al. Texture Segmentation Based on a Hierarchical Markov Model in Wavelet Domain[J]. Geomatics and Information Science of Wuhan University, 2009, 34(5):531-534 http://ch.whu.edu.cn/CN/abstract/abstract1248.shtml
    [12]
    Elliott R J, Aggoun L, Moore J B. Hidden Markov Models:Estimation and Control Stochastic Modelling and Applied Probability[M]. NY:Springer, 2008
    [13]
    Ghamisi P, Benediktsson J A, Ulfarsson M O. Spectral-spatial Classification of Hyperspectral Images Based on Hidden Markov Random Fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5):2565-2574 doi: 10.1109/TGRS.2013.2263282
    [14]
    Gonzalez R C, Woods R E. Digital Image Processing[M]. 2nd ed. Englewood Cliffs, NJ:Prentice-Hall, 2002
    [15]
    Eddy S R. ProfileHidden Markov Models[J]. Boiinformatics Review, 1998, 14(9):755-763 doi: 10.1093/bioinformatics/14.9.755
    [16]
    Jain A K, Murty M N, Flynn P J.Data Clustering:A Review[J]. ACM Comput Surv, 1999, 31(3):264-323 doi: 10.1145/331499.331504
  • Cited by

    Periodical cited type(28)

    1. 吕峥,孙群,温伯威,张付兵,马京振. 顾及形状相似性的道路与居民地协同化简方法. 地球信息科学学报. 2024(05): 1270-1282 .
    2. 铁占琦. 利用改进的Hausdorff距离匹配多尺度线要素. 地理空间信息. 2024(05): 62-65 .
    3. 王庆社,王雅欣,姜青香,郭思慧. “天地图·北京”多源道路数据融合关键技术研究. 北京测绘. 2024(06): 874-879 .
    4. 陈钉均,梁芮嘉. 基于特征聚类驾驶员服从度跟驰模型参数标定. 计算机仿真. 2024(10): 126-132 .
    5. 齐杰,王中辉,李驿言. 基于图卷积神经网络的道路网匹配. 测绘通报. 2023(12): 19-24+44 .
    6. 吴冰娇,王中辉,杨飞. 用于多尺度道路网匹配的语义相似性计算模型. 测绘科学. 2022(03): 166-173 .
    7. 蒋阳升,俞高赏,胡路,李衍. 基于聚类站点客流公共特征的轨道交通车站精细分类. 交通运输系统工程与信息. 2022(04): 106-112 .
    8. 周秀华,李乃强. 基于多种相似度特征的道路实体融合方法. 测绘通报. 2021(08): 102-105+157 .
    9. 秦育罗,宋伟东,张在岩,孙小荣. 顾及几何特征和拓扑连续性的道路网匹配方法. 测绘通报. 2021(08): 55-60 .
    10. 杨飞,王中辉. 河系几何相似性的层次度量方法. 地球信息科学学报. 2021(12): 2139-2150 .
    11. 程绵绵,孙群,季晓林,赵云鹏. 改进平均Fréchet距离法及在化简评价中的应用. 测绘科学. 2020(03): 170-177 .
    12. 赵元棣,田英杰,吴佳馨. 航空器飞行轨迹相似性度量及聚类分析. 中国科技论文. 2020(02): 249-254 .
    13. Wenyue GUO,Anzhu YU,Qun SUN,Shaomei LI,Qing XU,Bowei WEN,Yuanfu LI. A Multisource Contour Matching Method Considering the Similarity of Geometric Features. Journal of Geodesy and Geoinformation Science. 2020(03): 76-87 .
    14. 秦育罗,郭冰,孙小荣. 改进Hausdorff距离及其在多尺度道路网匹配中的应用. 测绘科学技术学报. 2020(03): 313-318 .
    15. 郝志伟,李成名,殷勇,武鹏达,吴伟. 一种基于Fréchet距离的断裂等高线内插算法. 测绘通报. 2019(01): 65-68+74 .
    16. 郭文月,刘海砚,孙群,余岸竹,丁梓越. 顾及几何特征相似性的多源等高线匹配方法. 测绘学报. 2019(05): 643-653 .
    17. 宗琴,彭荃,秦万英. 一种基于模糊矩阵的空间面对象相似性度量算法. 北京测绘. 2019(10): 1218-1221 .
    18. 李兆兴,翟京生,武芳. 线要素综合的形状相似性评价方法. 武汉大学学报(信息科学版). 2019(12): 1859-1864 .
    19. 周家新,陈建勇,单志超,陈长康. 航空磁探中潜艇目标的联合估计检测方法研究. 兵工学报. 2018(05): 833-840 .
    20. 郭宁宁,盛业华,吕海洋,黄宝群,张思阳. 径向基函数神经网络的路网自动匹配算法. 测绘科学. 2018(03): 45-50 .
    21. 张瀚,李静,吕品,徐永志,刘格林. 六角格网的弧线矢量数据量化拟合方法. 计算机辅助设计与图形学学报. 2018(04): 557-567 .
    22. 邵世维,刘辉,肖立霞,王恒. 一种基于Fréchet距离的复杂线状要素匹配方法. 武汉大学学报(信息科学版). 2018(04): 516-521 .
    23. 苏满佳,张逸鸿,谢荣臻,朱海飞,管贻生,毛世鑫. 连续软体机器人的结构范型与形态复现. 机器人. 2018(05): 640-647+672 .
    24. 宗琴,姜树辉,刘艳霞. 多尺度矢量地图中模糊相似变换及其度量模型. 测绘科学. 2018(11): 72-78 .
    25. 郭文月,刘海砚,孙群,余岸竹,季晓林. 利用最长公共子序列度量线要素相似性的方法. 测绘科学技术学报. 2018(05): 518-523 .
    26. 郭宁宁,盛业华,黄宝群,吕海洋,张思阳. 基于人工神经网络的多特征因子路网匹配算法. 地球信息科学学报. 2016(09): 1153-1159 .
    27. 杨亚辉. 利用几何相似性快速测量鱼重的数学模型. 电子技术与软件工程. 2016(20): 182-183 .
    28. 逯跃锋,张奎,刘硕,吴跃,赵硕,李强,冯晨. 一种基于斜率差和方位角的矢量数据匹配算法. 山东大学学报(工学版). 2016(06): 31-39 .

    Other cited types(28)

Catalog

    Article views (1800) PDF downloads (531) Cited by(56)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return