Citation: | BAO Rui, XUE Zhaohui, ZHANG Xiangyuan, SU Hongjun, DU Peijun. Classification Merged with Clustering and Context for Hyperspectral Imagery[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 890-896. DOI: 10.13203/j.whugis20150043 |
[1] |
童庆禧, 张兵, 郑兰芬.高光谱遥感:原理、技术与应用[M].北京:高等教育出版社, 2006
Tong Qingxi, Zhang Bin, Zheng Lanfen. Hyperspectral Remote Sensing:the Principle, Technology and Application[M]. Beijing:Higher Education Press, 2006
|
[2] |
Plaza A, Benediktsson J A, Boardman J W, et al. Recent Advances in Techniques for Hyperspectral Image Processing[J]. Remote Sens Environ, 2009, 113:S110-S122 doi: 10.1016/j.rse.2007.07.028
|
[3] |
Bioucas-Dias J M, Plaza A, Camps-Valls G, et al. Hyperspectral Remote Sensing Data Analysis and Future Challenges[J]. IEEE Geoscience & Remote Sensing Magazine, 2013, 1(2):6-36 http://www.academia.edu/14028682/Hyperspectral_Remote_Sensing_Data_Analysis_and_Future_Challenges
|
[4] |
Camps-Valls G, Tuia D, Bruzzone L, et al. Advances in Hyperspectral Image Classification[J]. IEEE Signal Processing Magazine, 2014, 31(1):45-54 doi: 10.1109/MSP.2013.2279179
|
[5] |
Pal M and Mather P M. Support Vector Machines for Classification in Remote Sensing[J]. International Journal of Remote Sensing, 2005, 26(5):1007-1011 doi: 10.1080/01431160512331314083
|
[6] |
Moser G, Serpico S B. Combining Support Vector Machines and Markov Random Fields in an Integrated Framework for Contextual Image Classification[J].IEEE Transactions on Geoscience & Remote Sensing, 2012, 50(5):1-19 https://www.researchgate.net/publication/235890131_Combining_Support_Vector_Machines_and_Markov_Random_Fields_in_an_Integrated_Framework_for_Contextual_Image_Classification
|
[7] |
Fauvel M, Tarabalka Y, Benediktsson J A, et al. Advances in Spectral-spatial Classification of Hyperspectral Images[J]. Proceedings of the IEEE, 2013, 101(3):652-675 doi: 10.1109/JPROC.2012.2197589
|
[8] |
Plaza A, Martinez P, Perez R, et al. A New Approach to Mixed Pixel Classification of Hyperspectral Imagery based on Extended Morphological Profiles[J]. Pattern Recognition, 2004, 37(6):1097-1116 doi: 10.1016/j.patcog.2004.01.006
|
[9] |
Borhani M, Ghassemian H. Hyperspectral Image Classification Based on Spectral-spatial Features Using Probabilistic SVM and Locally Weighted Markov Random Fields[C]. Intelligent Systems (ICIS), Iran, 2014
|
[10] |
Tarabalka Y, Benediktsson J A, Chanussot J. Spectral-spatial Classification of Hyperspectral Imagery Based on Partitional Clustering Techniques[J].IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8):2973-2987 doi: 10.1109/TGRS.2009.2016214
|
[11] |
刘国英, 茅力非, 王雷光, 等.基于小波域分层Markov模型的纹理分割[J].武汉大学学报·信息科学版, 2009, 34(5):531-534 http://ch.whu.edu.cn/CN/abstract/abstract1248.shtml
Liu Guoying, Mao Lifei, Wang Leiguang, et al. Texture Segmentation Based on a Hierarchical Markov Model in Wavelet Domain[J]. Geomatics and Information Science of Wuhan University, 2009, 34(5):531-534 http://ch.whu.edu.cn/CN/abstract/abstract1248.shtml
|
[12] |
Elliott R J, Aggoun L, Moore J B. Hidden Markov Models:Estimation and Control Stochastic Modelling and Applied Probability[M]. NY:Springer, 2008
|
[13] |
Ghamisi P, Benediktsson J A, Ulfarsson M O. Spectral-spatial Classification of Hyperspectral Images Based on Hidden Markov Random Fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5):2565-2574 doi: 10.1109/TGRS.2013.2263282
|
[14] |
Gonzalez R C, Woods R E. Digital Image Processing[M]. 2nd ed. Englewood Cliffs, NJ:Prentice-Hall, 2002
|
[15] |
Eddy S R. ProfileHidden Markov Models[J]. Boiinformatics Review, 1998, 14(9):755-763 doi: 10.1093/bioinformatics/14.9.755
|
[16] |
Jain A K, Murty M N, Flynn P J.Data Clustering:A Review[J]. ACM Comput Surv, 1999, 31(3):264-323 doi: 10.1145/331499.331504
|