KANG Yifei, PAN Li, SUN Mingwei, CHEN Qi, WANG Yue. Gaussian Mixture Model Based Cloud Detection for Chinese High Resolution Satellite Imagery[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 782-788. DOI: 10.13203/j.whugis20140875
Citation: KANG Yifei, PAN Li, SUN Mingwei, CHEN Qi, WANG Yue. Gaussian Mixture Model Based Cloud Detection for Chinese High Resolution Satellite Imagery[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 782-788. DOI: 10.13203/j.whugis20140875

Gaussian Mixture Model Based Cloud Detection for Chinese High Resolution Satellite Imagery

Funds: 

The Major State Basic Research Development National of China (973 Program) 2012CB719900

the National Natural Science Foundation of China 41301519

More Information
  • Author Bio:

    KANG Yifei, PhD candidate, specializes in digital photogrammetry. E-mail:2217707@163.com

  • Corresponding author:

    PAN Li, PhD, professor. E-mail:panli@whu.edu.cn

  • Received Date: October 21, 2015
  • Published Date: June 04, 2017
  • Domestic earth observation satellites, such as ZY-3 and GF-1, have few image bands and limited spectral range. Focusing on those features, this paper outlines a cloud detection algorithm that automatically obtains the grey threshold through histogram fitting by the Gaussian Mixture Model. The algorithm obtains initial parameters automatically from the image histogram; and then it adjusts these parameters by iteration based on the Expectation Maximum principle. It automatically obtains the grey threshold between cloud and clear sky in a chosen image, in line with the distribution features of the components in the Gaussian Mixture Model. Experimental results show that this method has strong advantages, as the range of the spectral bands are not a limit and thus is suitable for both cloudy and cloudless images. In addition, the proposed method needs no auxillary information or manual intervention. It has high computational accuracy and efficiency meeting the requirements for automatic engineering production.
  • [1]
    Zhu Z, Woodcock C E. Object-Based Cloud and Cloud Shadow Detection in Landsat Imagery[J]. Remote Sensing of Environment, 2012, 118(6): 83-94 https://www.researchgate.net/publication/256850150_Object-based_cloud_and_cloud_shadow_detection_in_Landsat_imagery
    [2]
    Panem C, Baillarin S, Latry C, et al. Automatic Cloud Detection on High Resolution Images[C]. IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea, 2005
    [3]
    Wu X, Yang W, Li G. Thin Cloud Removal of ZY-3 Image Based on Improved Homomorphism Filtering Method[C]. IEEE International Conference on Geoinformatics, Kaifeng, China, 2013
    [4]
    韩念龙, 刘闯, 庄立, 等.基于不同小波变换与同态滤波结合的CBERS-02B卫星CCD图像的薄云去除[J].吉林大学学报(地球科学版), 2012, 42(1): 275-279 http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201201039.htm

    Han Nianlong, Liu Chuang, Zhuang Li, et al. Removing Thin Cloud by Combining Wavelet Transforms and Homomorphic Filter in the CBERS-02B Image[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(1): 275-279 http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201201039.htm
    [5]
    Irish R R, Barker J L, Goward S N, et al. Characterization of the Landsat-7 ETM+ Automated Cloud-Cover Assessment (ACCA) Algorithm[J]. Photogrammetric Engineering & Remote Sensing, 2006, 72(10): 1 179-1 188 https://www.researchgate.net/publication/261530361_Characterization_of_the_Landsat-7_ETM_Automated_Cloud-Cover_Assessment_ACCA_algorithm
    [6]
    文雄飞, 董新奕, 刘良明."云指数法"云检测研究[J].武汉大学学报·信息科学版, 2009, 34(7): 838-841 http://ch.whu.edu.cn/CN/abstract/abstract1276.shtml

    Wen Xiongfei, Dong Xinyi, Liu Liangming. Cloud Index Method for Cloud Detection[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 838-841 http://ch.whu.edu.cn/CN/abstract/abstract1276.shtml
    [7]
    李德仁.我国第一颗民用三线阵立体测图卫星—资源三号测绘卫星[J].测绘学报, 2012, 41(3): 317-322 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201203003.htm

    Li Deren. China's First Civilian Three-Line-Array Stereo Mapping Satellite:ZY-3[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(3): 317-322 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201203003.htm
    [8]
    Otsu N. A Threshold Selection Method From Gray-Level Histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66 doi: 10.1109/TSMC.1979.4310076
    [9]
    Dempster A P, Laird N M, Rubin D B. Maximum Likelihood from Incomplete Data via the EM Algorithm[J]. Journal of the Royal Statistical Society, 1977, 39(1): 1-38 https://www.researchgate.net/publication/215721461_Maximum_Likelihood_From_Incomplete_Data_Via_The_EM_algorithm
    [10]
    熊彪, 江万寿, 李乐林.基于高斯混合模型的遥感影像半监督分类[J].武汉大学学报·信息科学版, 2011, 36(1): 108-112 http://ch.whu.edu.cn/CN/abstract/abstract431.shtml

    Xiong Biao, Jiang Wanshou, Li Lelin. Gauss Mixture Model Based Semi-supervised Classification for Remote Sensing Image[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 108-112 http://ch.whu.edu.cn/CN/abstract/abstract431.shtml
    [11]
    李亚平, 杨华, 陈霞.基于EM和BIC的直方图拟合方法应用于遥感变化检测阈值确定[J].遥感学报, 2008, 12(1): 85-91 http://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200801012.htm

    Li Yaping, Yang Hua, Chen Xia. Determination of Threshold in Change Detection Based on Histogram Approximation Using Expectation Maximization Algorithm and Bayes Information Criterion[J]. Journal of Remote Sensing, 2008, 12(1): 85-91 http://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200801012.htm
    [12]
    骆剑承, 王钦敏, 马江洪, 等.遥感图像最大似然分类方法的EM改进算法[J].测绘学报, 2002, 31(3):234-239 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200203010.htm

    Luo Jiancheng, Wang Qinmin, Ma Jianghong, et al. The EM-Based Maximum Likelihood Classifier for Remotely Sensed Data[J]. Acta Geodaetica et Cartographica Sinica, 2002, 31(3): 234-239 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200203010.htm
    [13]
    刘健. FY-2云检测中动态阈值提取技术改进方法研究[J].红外与毫米波学报, 2010, 29(4):288-292 http://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201004012.htm

    Liu Jian. Improvement of Dynamic Threshold Value Extraction Technic in FY-2 Cloud Detection[J].J Infrared Millin Waves, 2010, 29(4):288-292 http://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201004012.htm
    [14]
    单娜, 郑天垚, 王贞松.快速高准确度云检测算法及其应用[J].遥感学报, 2009, 13(6): 1 138-1 155 http://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200906013.htm

    Shan Na, Zheng Tianyao, Wang Zhensong. High-Speed and High-Accuracy Algorithm for Cloud Detection and Its Application[J].Journal of Remote Sensing, 2009, 13(6): 1 138-1 155 http://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200906013.htm
    [15]
    高贤君, 万幼川, 郑顺义, 等.航空摄影过程中云的实时自动检测[J].光谱学与光谱分析, 2014, 34(7): 1 909-1 913 http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201407042.htm

    Gao Xianjun, Wan Youchuan, Zheng Shunyi, et al. Real-Time Automatic Cloud Detection During the Process of Taking Aerial Photographs[J].Spectroscopy and Spectral Analysis, 2014, 34(7): 1 909-1 913 http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201407042.htm
    [16]
    陶淑苹, 金光, 张贵祥, 等.实现遥感相机自主辨云的小波SCM算法[J].测绘学报, 2011, 40(5): 598-603 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201105013.htm

    Tao Shuping, Jin Guang, Zhang Guixiang, et al. A Wavelet SCM Algorithm Used to Detect Cloud in Remote Sensing Cameras[J].Acta Geodaetica et Cartographica Sinica, 2011, 40(5): 598-603 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201105013.htm
    [17]
    秦永, 付仲良, 周凡, 等.一种利用TM影像自动检测云层的方法[J].武汉大学学报·信息科学版, 2014, 39(2): 234-238 http://ch.whu.edu.cn/CN/abstract/abstract2924.shtml

    Qin Yong, Fu Zhongliang, Zhou Fan, et al. A Method of Automatic Cloud Detection Using TM Image[J].Geomatics and Information Science of Wuhan University, 2014, 39(2): 234-238 http://ch.whu.edu.cn/CN/abstract/abstract2924.shtml
    [18]
    陈刚, 鄂栋臣.基于纹理分析和支持向量机的极地冰雪覆盖区的云层检测[J].武汉大学学报·信息科学版, 2006, 31(5): 403-406 http://ch.whu.edu.cn/CN/abstract/abstract2454.shtml

    Chen Gang, E Dongchen. Cloud Detection Based on Texture Analysis and SVM over Ice-Snow Covered Area[J]. Geomatics and Information Science of Wuhan University, 2006, 31(5): 403-406 http://ch.whu.edu.cn/CN/abstract/abstract2454.shtml
  • Related Articles

    [1]ZHUANG Huifu, DENG Kazhong, YU Mei, FAN Hongdong. A Novel Approach Combining KI Criterion and Inverse Gaussian Model to Unsupervised Change Detection in SAR Images[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2): 282-288. DOI: 10.13203/j.whugis20160079
    [2]ZHANG Xiaohong, ZENG Qi, HE Jun, KANG Chao. Improving TurboEdit Real-time Cycle Slip Detection by the Construction of Threshold Model[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 285-292. DOI: 10.13203/j.whugis20150045
    [3]JIANG Xinhua, WANG Xianhua, YE Hanhan, BU Tingting, SANG Hao. Threshold Selecting Method of Cloud Detection Applied to O2-A Band[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2): 202-207. DOI: 10.13203/j.whugis20140772
    [4]YIN Chuan, WANG Yanhui. Target Geometry Matching Threshold in Incremental Updatingof Road Networks Based on OSTU[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1061-1067. DOI: 10.13203/j.whugis20130575
    [5]LIU Liangming, WEI Ran, ZHOU Zheng. Forest and Grassland Fire Detection Algorithm Based on Dynamic Threshold[J]. Geomatics and Information Science of Wuhan University, 2011, 36(12): 1434-1437.
    [6]SHENG Shaohong, WAN Youchuan, GONG Hao, LAI Zulong. An Adaptive Threshold Segmentation Method Based on Spatial Statistic Theory to High-resolution Remote Sensing Change Detection[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 902-905.
    [7]FAN Yating, YANG Jianyu, ZHU Dehai, WANG Yanji. A Distance Attenuation Model for Urban Land Classification Based on Threshold[J]. Geomatics and Information Science of Wuhan University, 2008, 33(3): 277-280.
    [8]ZHANG Mengjun, SHU Hong, LIU Yan, WANG Tao. An Adaptive Thresholding Approach Based on Spatial Curved Surface Fitting[J]. Geomatics and Information Science of Wuhan University, 2006, 31(5): 395-398.
    [9]JIANG Liu, SHEN Weiming, Chong Yanwen, DUAN Hanwen. Image Threshold Segmentation Based on Multi-scale Space Analysis[J]. Geomatics and Information Science of Wuhan University, 2002, 27(6): 582-585.
    [10]Zheng Hong, Pan Li. Genetic Algorithms and Its Application in the Seiection of Image Threshold[J]. Geomatics and Information Science of Wuhan University, 1999, 24(1): 20-23.
  • Cited by

    Periodical cited type(13)

    1. 戴佩玉,李世忠,季顺平,任妮. 一种基于域自适应泛化增强的云检测方法. 武汉大学学报(信息科学版). 2025(01): 110-119 .
    2. 徐梓川,龚晓峰. 基于语义指导和自适应卷积的遥感云检测算法. 电子测量技术. 2024(01): 136-143 .
    3. 李长萍,于大海,郭豪,李杰,胡滨. 复杂场景下多重损失的步态识别系统的实现. 软件. 2023(05): 11-18 .
    4. 刘广进,王光辉,毕卫华,刘慧杰,杨化超. 基于DenseNet与注意力机制的遥感影像云检测算法. 自然资源遥感. 2022(02): 88-96 .
    5. 黄学飞,梁昌远,郭杰. 融合注意力机制的LandSat8遥感影像云检测算法. 电脑知识与技术. 2022(23): 63-65 .
    6. 黄宇,潘励. 基于显著性图像与纹理特征的遥感影像云检测. 测绘地理信息. 2021(02): 16-19 .
    7. 王亚利,都伟冰,王双亭. 高斯混合模型自动阈值法遥感冰川信息提取. 遥感学报. 2021(07): 1434-1444 .
    8. 王明,刘正佳,陈元琰. 基于Sentinel-2波段/产品的图像云检测效果对比研究. 遥感技术与应用. 2020(05): 1167-1177 .
    9. 刘云峰,杨珍,韩骁,付俊. 国产高分辨率卫星影像云检测方法分析. 测绘通报. 2020(11): 66-70 .
    10. 徐冬宇,厉小润,赵辽英,舒锐,唐琪佳. 基于光谱分析和动态分形维数的高光谱遥感图像云检测. 激光与光电子学进展. 2019(10): 93-101 .
    11. 余长慧,于海威,张文,孟令奎. 神经网络支持下的Sentinel-2卫星影像自动云检测. 测绘通报. 2019(08): 39-43 .
    12. 董志鹏,王密,李德仁,王艳丽,张致齐. 利用对象光谱与纹理实现高分辨率遥感影像云检测方法. 测绘学报. 2018(07): 996-1006 .
    13. 张波,刘鹤飞,王坤. 异分布混合模型及其参数的贝叶斯估计. 曲靖师范学院学报. 2018(06): 1-4 .

    Other cited types(14)

Catalog

    Article views (1794) PDF downloads (446) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return