LU Jun, ZHANG Baoming, GUO Haitao, ZHANG Hongwei. A Batch Reconstruction Algorithm of Multi-view Images Using Image Triplets[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 109-115. DOI: 10.13203/j.whugis20140672
Citation: LU Jun, ZHANG Baoming, GUO Haitao, ZHANG Hongwei. A Batch Reconstruction Algorithm of Multi-view Images Using Image Triplets[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 109-115. DOI: 10.13203/j.whugis20140672

A Batch Reconstruction Algorithm of Multi-view Images Using Image Triplets

Funds: 

The National 973 Program of China 2012CB720000

More Information
  • Author Bio:

    LU Jun, PhD candidate, lecturer, specializes in digital photogrammetry and computer vision. E-mail: ljhb45@126.com

  • Received Date: December 15, 2014
  • Published Date: January 04, 2017
  • 3D reconstruction of unordered multi-view images is very sensitive to noise. Error matching relations will affect the accuracy of the reconstruction or even lead to failure. A robust batch reconstruction algorithm is proposed in this paper, first the triplets which may contain mismatches are removed using closed cycle constraint, and then the trifocal tensor constraint in triplet is used instead of the epipolar constraint of the traditional algorithm, also the linear programming algorithm with the l norm is used instead of the second order cone programming to calculate a global optimum of rotations and locations of all the images. An efficient Union Find algorithm is introduced into the reconstruction to exact the multi-view matching points, and the 3D points are computed using the iterative linear triangulation. Experimental results show that the proposed method performs satisfactorily in terms of reconstruction efficiency and accuracy.
  • [1]
    Hartley R I, Trumpf J, Dai Y, et al. Rotation Averaging[J]. International Journal of Computer Vision, 2013, 103(3):267-305 doi: 10.1007/s11263-012-0601-0
    [2]
    Arie-Nachimson M, Kovalsky S Z, Kemelmacher-Shlizerman I, et al. Global Motion Estimation from Point Matches[C]. 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT), Zurich, 2012
    [3]
    郭复胜, 高伟.基于辅助信息的无人机图像批处理三维重建方法[J].自动化学报, 2013, 39(6):834-845 doi: 10.1016/S1874-1029(13)60056-7

    Guo Fusheng, Gao Wei. Batch Reconstruction from UAV Images with Prior Information[J]. Acta Automatica Sinica, 2013, 39(6):834-845 doi: 10.1016/S1874-1029(13)60056-7
    [4]
    Martinec D, Pajdla T. Robust Rotation and Translation Estimation in Multiview Reconstruction[C]. Computer Vision and Pattern Recognition, Minnesota, New York, 2007
    [5]
    Kahl F, Hartley R I. Multiple-view Geometry under the l∞-norm[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(9):1603-1617 doi: 10.1109/TPAMI.2007.70824
    [6]
    郑顺义, 张祖勋, 翟瑞芳.基于非量测相机的复杂物体三维重建[J].武汉大学学报·信息科学版, 2008, 33(5):446-449 http://ch.whu.edu.cn/CN/abstract/abstract1580.shtml

    Zheng Shunyi, Zhang Zuxun, Zhai Ruifang. 3D Reconstruction of Complex Objects Based on Non-metric Image[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5):446-449 http://ch.whu.edu.cn/CN/abstract/abstract1580.shtml
    [7]
    Hartley R I, Zisserman A. Multiple View Geometry in Computer Vision[M]. New York:Cambridge University Press, 2003
    [8]
    Jiang Nianjuan, Cui Zhaopeng, Tan Ping. A Global Linear Method for Camera Pose Registration[C]. IEEE International Conference on Computer Vision, Sydney, 2013
    [9]
    Hartley R I, Sturm P. Triangulation[J]. Computer Vision and Image Understanding, 1997, 68(2):146-157 doi: 10.1006/cviu.1997.0547
    [10]
    Moulon P, Monasse P, Marlet R. Global Fusion of Relative Motions for Robust, Accurate and Scalable Structure from Motion[C]. IEEE International Conference on Computer Vision, Sydney, 2013
    [11]
    Fasano P, Forrest J. The COIN-OR Open Solver Interface:Technology Overview[EB/OL].https://projects.coin-or.org/Osi,2014
    [12]
    Galler B A, Fischer M J. An Improved Equivalence Algorithm[J]. Communications of the ACM, 1964, 7(5):301-303 doi: 10.1145/364099.364331
    [13]
    Snavely, Seitz S M, Szeliski R. Modeling The World from Internet Photo Collections[J]. International Journal of Computer Vision, 2008, 80(2):189-210 doi: 10.1007/s11263-007-0107-3
    [14]
    Lourakis M I A, Argyros A A. Sba:A Software Package for Generic Sparse Bundle Adjustment[J]. ACM Transactions on Mathematical Software, 2009, 36(1):1-30 https://dl.acm.org/purchase.cfm?id=1486527
    [15]
    Strecha C, van Hansen W, van Gool L J, et al. On Benchmarking Camera Calibration and Multi-View Stereo for High Resolution Imagery[C].Computer Vision and Pattern Recognition, Alaska, New York, 2008
    [16]
    Lowe D. Distinctive Image Features from Scale-Invariant Keypoints[J]. International journal of computer vision, 2004, 60(2):91-110 doi: 10.1023/B:VISI.0000029664.99615.94
    [17]
    Nistér D. An Efficient Solution to the Five-Point Relative Pose Problem[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(6):756-770 doi: 10.1109/TPAMI.2004.17
    [18]
    Wu C. Towards Linear-Time Incremental Structure from Motion[C].3DTV-Conference, Aberdeen, 2013
    [19]
    Sinha S, Steedly D, Szeliski R. A Multi-stage Linear Approach to Structure from Motion[M]. Berlin:Springer, 2012
  • Related Articles

    [1]ZHOU Fangbin, ZOU Lianhua, LIU Xuejun, MENG Fanyi. Micro Landform Classification Method of Grid DEM Based on Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1186-1193. DOI: 10.13203/j.whugis20190311
    [2]ZOU Kun, WO Yan, XU Xiang. A Feature Significance-Based Method to Extract Terrain Feature Lines[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 342-348. DOI: 10.13203/j.whugis20150373
    [3]CAO Zhenzhou, LI Manchun, CHENG Liang, CHEN Zhenjie. Progressive Transmission of Vector Curve Data over InternetCAO ZhenzhouLI Manchun[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 475-479.
    [4]ZHENG Shunyi, HU Hualiang, HUANG Rongyong, JI Zheng. Realtime Ranging of Power Transmission Line[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6): 704-707.
    [5]AI Bo, AI Tinghua, TANG Xinming. Progressive Transmission of River Network[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 51-54.
    [6]LIU Yan, LIU Jingnan, LI Tao, XIA Ye. Monitoring Damage of State Grid Transmission Tower in Bad Weather by High-Resolution SAR Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1354-1358.
    [7]YIN Hui, ZHANG Xiaohong, ZHANG Xiaowu, LIU Xingfa. Interference Analysis to Aerial Flight Caused by UHV Lines Using Airborne GPS[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 774-777.
    [8]WANG Cheng, HU Peng, LIU Xiaohang, LI Yunxiang. Automated Classification of Martian Landforms Based on Digital Terrain Analysis(DTA) Technology[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 483-487.
    [9]ZHENG Jingjing, FANG Jinyun, HAN Chengde. Progressive Transmission Method of DEM Data Based on JPEG2000 Lossless-Compression[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 395-399.
    [10]WANG Wei, DU Daosheng, XIONG Hanjiang, ZHONG Jing. 3D Modeling and Data Organization of Power Transmission[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11): 986-990.
  • Cited by

    Periodical cited type(7)

    1. 邱龙. 基于无人机测绘图像的大面积地形变化特征提取方法. 北京测绘. 2024(06): 930-935 .
    2. 邓颖,蒋兴良,张志劲,曾蕴睿,马龙飞. 基于DEM分析的输电线路覆冰微地形分类识别及验证方法. 高电压技术. 2024(11): 4971-4980 .
    3. 巩鑫龙,田瑞,王孟. 220?kV正兰甲线所在微地形区域风场特性研究. 电力安全技术. 2024(11): 47-51 .
    4. 董慎学,石峰,刘刚,王有威,徐兆国. 垭口地形对输电线路风场分布特性影响分析. 重庆理工大学学报(自然科学). 2023(06): 340-346 .
    5. 吴建蓉,文屹,张啟黎,何锦强,张厚荣,龚博. 基于GIS的易覆冰微地形分类提取算法与三维应用. 高电压技术. 2023(S1): 1-5 .
    6. 周访滨,钟绍平,朱衍哲,杨自强,马国伟. 顾及爆燃地形特征的峡谷分级提取方法. 测绘科学. 2023(09): 89-98 .
    7. 胡京,邓颖,蒋兴良,曾蕴睿. 输电线路覆冰垭口微地形的特征提取与识别方法. 中国电力. 2022(08): 135-142 .

    Other cited types(0)

Catalog

    Article views (1840) PDF downloads (417) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return