XU Yaming, ZHOU Xiao, WANG Peng, XING Cheng. A Method of Constructing Permanent Scatterers Network to Correct the Meteorological Disturbance by GB-SAR[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1007-1012. DOI: 10.13203/j.whugis20140507
Citation: XU Yaming, ZHOU Xiao, WANG Peng, XING Cheng. A Method of Constructing Permanent Scatterers Network to Correct the Meteorological Disturbance by GB-SAR[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1007-1012. DOI: 10.13203/j.whugis20140507

A Method of Constructing Permanent Scatterers Network to Correct the Meteorological Disturbance by GB-SAR

Funds: 

The National Natural Science Foundation of China 41274021

The National Natural Science Foundation of China 41301434

2014 Basic Surveying and Mapping Project of National Administration of Surveying 

the Open Foundation of Key Laboratory of Precise Engineering and Industry Surveying of National Administration of Surveying, Mapping and Geoinformation PF2015-1

More Information
  • Author Bio:

    XU Yaming, PhD, professor, specializes in precision engineering survey.E-mail:ymxu@sgg.whu.edu.cn

  • Corresponding author:

    ZHOU Xiao, PhD. E-mail:zhouxiao9988@126.com

  • Received Date: July 24, 2015
  • Published Date: August 04, 2016
  • Atmospheric disturbance has a great influence on the measurement accuracy of Ground-Based SAR; thus the selection of a suitable atmospheric correction method is related to the reliability and accuracy of measurement results. A whole scene atmospheric correction method using the PS atmospheric correction network is proposed, and applied in a experiment monitoring a high-risk slope under construction. The effectiveness of the meteorological correction method proposed in this paper was verified by a comparison with the results of conventional atmospheric correction method and surveying robot.
  • [1]
    Monserrat O, Crosetto M, Luzi G. A Review of Ground-based SAR Interferometry for Deformation Measurement[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93(7): 40-48 http://adsabs.harvard.edu/abs/2014IJPRS..93...40M
    [2]
    徐亚明, 王鹏, 周校, 等.地基干涉雷达IBIS-S桥梁动态形变监测研究[J].武汉大学学报·信息科学版, 2013, 38(7): 845-849

    Xu Yaming, Wang Peng, Zhou Xiao, et al. Research on Dynamic Deformation Monitoring of Bridges Using Ground-based Interferometric Radar IBIS-S[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7): 845-849
    [3]
    Han H, Lee H. Motion of Campbell Glacier, East Antarctica, Observed by Satellite and Ground-based Interferometric Synthetic Aperture Radar[C]. The 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Seoul, Korea, 2011
    [4]
    Sabine R, Matthias B, Carl G, et al. Digital Elevation Model with the Ground-Based SAR IBIS-L as Basis for Volcanic Deformation Monitoring[J]. Journal of Geodynamics, 2010, 49(s3-4): 241-246 http://cn.bing.com/academic/profile?id=2093673366&encoded=0&v=paper_preview&mkt=zh-cn
    [5]
    Noferini L, Mecatti D, Macaluso G, et al. A High Speed Microwave Interferometer Used for Monitoring Stromboli Volcano[C].IEEE International Geoscience & Remote Sensing Symposium, Cape Town, South Africa, 2009
    [6]
    Gentile C, Bernardini G. An Interferometric Radar for Non-contact Measurement of Deflections on Civil Engineering Structures: Laboratory and Full-scale Tests[J]. Structure and Infrastructure Engineering, 2010, 6(5): 521-534 doi: 10.1080/15732470903068557
    [7]
    周校, 王鹏, 邢诚.基于GB-SAR的建筑物微变形测量研究[J].测绘地理信息, 2012, 37(5): 40-43 http://mall.cnki.net/magazine/article/chxg201205015.htm

    Zhou Xiao, Wang Peng, Xing Cheng. Micro Deformation Mearsurement of Building Based on GB-SAR[J]. Journal of Geomatics, 2012, 37(5): 40-43 http://mall.cnki.net/magazine/article/chxg201205015.htm
    [8]
    魏恋欢, 廖明生, BALZ Timo, 等.高分辨率SAR层析成像建筑物叠掩散射体提取[J].武汉大学学报信息科学版, 2014, 39(5):536-540 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201405006.htm

    Wei Lianhuan, Liao Mingsheng, BALZ Timo, et al. Layover Building Scatterers Extraction via High-Resolution Spaceborne SAR Tomography[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5):536-540 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201405006.htm
    [9]
    Alba M, Bernardini G, Giussani A, et al. Measurement of Dam Deformations by Terrestrial Interferometric Techniques[C]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, 2008 http://www.isprs.org/proceedings/XXXVII/congress/1_pdf/23.pdf
    [10]
    Takahashi K, Mecatti D, Dei D, et al. Landslide Observation by Ground-Based SAR Interferometry[C].IEEE International Geoscience & Remote Sensing Symposium, Munich, Germany, 2012
    [11]
    Bozzano F, Cipriani I, Mazzanti P, et al. Displacement Patterns of a Landslide Affected by Human Activities: Insights from Ground-Based InSAR Monitoring[J]. Natural Hazards, 2011, 59(3): 1 377-1 396 doi: 10.1007/s11069-011-9840-6
    [12]
    Casagli N, Catani F, Del Ventisette C, et al. Monitoring, Prediction, and Early Warning Using Ground-based Radar Interferometry[J]. Landslides, 2010, 7(3): 291-301 doi: 10.1007/s10346-010-0215-y
    [13]
    杨红磊, 彭军还, 崔洪曜. GB-InSAR监测大型露天矿边坡形变[J].地球物理学进展, 2012, 27(4): 1 804-1 811 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDX201203004.htm

    Yang Honglei, Peng Junhuan, Cui Hongyao. Slope of Large-scale Open-pit Mine Monitoring Deformations by Using Ground-based Interferometry[J]. Progress in Geophysic, 2012, 27(4): 1 804-1 811 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDX201203004.htm
    [14]
    Pipia L, Aguasca A, Fabregas X, et al. Mining Induced Subsidence Monitoring in Urban Areas with a Ground-based SAR[C]. Urban Remote Sensing Joint Event, Paris, France, 2007
    [15]
    Iannini L, Guarnieri A M. Atmospheric Phase Screen in Ground-based Radar: Statistics and Compensation[J]. Geoscience and Remote Sensing Letters, 2011, 8(3): 537-541 doi: 10.1109/LGRS.2010.2090647
    [16]
    Iglesias R, Fabregas X, Aguasca A. Atmospheric Phase Screen Compensation in Ground-based SAR with a Multiple-regression Model over Mountainous Regions[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(5):2 436-2 449 http://cn.bing.com/academic/profile?id=2124931768&encoded=0&v=paper_preview&mkt=zh-cn
    [17]
    徐亚明, 周校, 王鹏, 等.地基雷达干涉测量的环境改正方法研究[J].大地测量与地球动力学, 2013, 33(3): 41-43 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201303008.htm

    Xu Yaming, Zhou Xiao, Wang Peng, et al. Environment Correction Method of Ground-based Radar Interferometry[J]. Journal of Geodesy and Geodynamics, 2013, 33(3): 41-43 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201303008.htm
    [18]
    周文斌, 许文斌, 李志伟, 等.考虑高程信息的MERIS水汽插值及其在ASAR干涉图大气改正中的应用[J].武汉大学学报信息科学版, 2012, 37(8):963-977 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201208020.htm

    Zhou Wenbin, Xu Wenbin, Li Zhiwei, et al. Elevation-dependent MERIS Water Vapor Interpolation and Its Application to Atmospheric Correction on ASAR Interferogram[J].Geomatics and Information Science of Wuhan University, 2012, 37(8): 963-977 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201208020.htm
    [19]
    鄢子平, 李振洪. InSAR大气水汽改正模型的比较应用研究[J].武汉大学学报信息科学版, 2008, 33(7):723-726 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200807015.htm

    Yan Ziping, Li Zhenhong. Comparison of Atmospheric Water Vapour Correction Models for InSAR Measurements[J]. Geomatics and Information Science of Wuhan University, 2008, 33(7):723-726 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200807015.htm
    [20]
    吴云孙, 李振洪, 刘经南, 等. InSAR观测值大气改正方法的研究进展[J].武汉大学学报信息科学版, 2006, 31(10):862-867 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200610004.htm

    Wu Yunsun, Li Zhenhong, Liu Jingnan, et al. Atmospheric Correction Models for InSAR Measurements[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10):862-867 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200610004.htm
    [21]
    Fabregas X, Iglesias R, Aguasca A. A New Approach for Atmospheric Phase Screen Compensation in Ground-based SAR over Areas with Steep Topography[C]. The 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 2012 https://www.researchgate.net/publication/260190151_A_new_approach_for_Atmospheric_Phase_Screen_Compensation_in_Ground-Based_SAR_over_areas_with_steep_topography
    [22]
    Iwe H. Ground Based Interferometric Synthetic Aperture Radar for Monitoring Slowly Moving Surfaces[D]. Norway:University of Oslo, 2012
    [23]
    Yigit E, Demirci S, Unal A, et al. Millimeter-wave Ground-based Synthetic Aperture Radar Imaging for Foreign Object Debris Detection: Experimental Studies at Short Ranges[J]. Journal of Infrared Millimeter & Terahertz Waves, 2012, 33(12): 1 227-1 238 http://cn.bing.com/academic/profile?id=1965740787&encoded=0&v=paper_preview&mkt=zh-cn
    [24]
    宋小刚, 李德仁, 廖明生, 等.基于GPS观测量的InSAR干涉图中对流层改正方法及其论证[J].武汉大学学报信息科学版, 2008, 33(3):233-236 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200803004.htm

    Song Xiaogang, Li Deren, Liao Mingsheng, et al. A Method to Correct Tropospheric Delay in SAR Interferometry from GPS Observations[J]. Geomatics and Information Science of Wuhan University, 2008, 33(3):233-236 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200803004.htm
    [25]
    Pipia L, Fabregas X, Aguasca A, et al. Atmospheric Artifact Compensation in Ground-based DInSAR Applications[J]. Geoscience and Remote Sensing Letters, IEEE, 2008, 5(1): 88-92 doi: 10.1109/LGRS.2007.908364
  • Cited by

    Periodical cited type(15)

    1. 刘祥磊,袁田玉阁,王闰杰,卢钊,王辉,黄祎萌,姜孟卓,吴海倩. 地基雷达干涉测量桥梁动挠度高精度监测方法综述. 测绘. 2024(06): 275-279 .
    2. 白泽朝,王彦平,王振海,胡俊,李洋,林赟. 地基大视场SAR形变监测的非均匀大气相位校正方法. 雷达学报. 2023(01): 53-63 .
    3. 杜钊锋,张丹丹,杨兴旺,陈真. 地基雷达干涉测量在高铁桥梁纠偏中的应用. 工程勘察. 2023(09): 62-67+78 .
    4. 徐甫,王政,李振洪,李永生. 复杂环境下的地基雷达大气改正方法. 武汉大学学报(信息科学版). 2023(12): 2069-2081 .
    5. 金重阳,刘毓,邓云开,田卫明,胡政权. 面向复杂大气扰动的GB-InSAR相位误差补偿方法. 信号处理. 2022(11): 2432-2442 .
    6. 汤进,刘毓,邓云开,胡政权,陈姣. 地基干涉合成孔径雷达的大气相位补偿研究. 测绘科学. 2022(11): 145-154 .
    7. 毛亚纯,曹旺,赵占国,徐茂林. 基于多元回归模型的GB-SAR监测误差改正及形变分析. 东北大学学报(自然科学版). 2020(01): 125-130 .
    8. 马金玉,龙四春,童爱霞,吴文豪,祝传广. 复杂环境下地基SAR粗差探测及应用. 测绘通报. 2020(02): 43-48+54 .
    9. 樊斌,李静涛,郝燕奎. 露天矿边坡地基干涉雷达变形监测数据特征分析. 露天采矿技术. 2020(05): 58-60+64 .
    10. 刘小阳,李峰,孙广通,钱安,朱红,李佳乐. 一种露天矿高边坡形变监测的新方法. 金属矿山. 2020(11): 59-65 .
    11. 刘龙龙,张继贤,王世杰,赵争. 新型FMCW地基SAR和三维激光扫描仪在大坝变形监测中的应用. 测绘通报. 2019(03): 76-80 .
    12. 杜钊锋,张庆涛,陈真,程小凯,张德成. 地基雷达干涉测量技术在地质灾害应急测绘中的应用. 测绘与空间地理信息. 2019(06): 26-29 .
    13. 胡程,邓云开,田卫明,曾涛. 地基干涉合成孔径雷达图像非线性大气相位补偿方法. 雷达学报. 2019(06): 831-840 .
    14. 刘小阳,孙广通,李峰,宋萍,刘军,钱安,王秋玲. 地基SAR基坑微形变监测方法研究. 红外与激光工程. 2018(03): 215-221 .
    15. 王振攀. 边坡雷达在矿区边坡监测区域的应用分析. 信息与电脑(理论版). 2017(10): 218-219 .

    Other cited types(18)

Catalog

    Article views (1413) PDF downloads (388) Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return