HE Yawen, WEI Haitao, DU Yunyan. Design and Application on the Cloud Computing Based Method of Marine Environment Data Sharing[J]. Geomatics and Information Science of Wuhan University, 2016, 41(10): 1307-1312. DOI: 10.13203/j.whugis20140466
Citation: HE Yawen, WEI Haitao, DU Yunyan. Design and Application on the Cloud Computing Based Method of Marine Environment Data Sharing[J]. Geomatics and Information Science of Wuhan University, 2016, 41(10): 1307-1312. DOI: 10.13203/j.whugis20140466

Design and Application on the Cloud Computing Based Method of Marine Environment Data Sharing

Funds: 

The National Natural Science Foundation of China No. 41401439

the Science and Technology Planning Project of Huangdao No. 2014-1-53

the Open Fund of the Key Laboratory of Satellite Ocean Environment Dynamics No. SOED1502

the Open Fund of the State Key Laboratory of Resources and Environmental Information System a Process-Oriented Construction Method for Marine Environment Data Service

More Information
  • Corresponding author:

    WEI Haitao,PhD. Email:894917442@qq.com

  • Received Date: April 26, 2015
  • Published Date: October 04, 2016
  • The integration and sharing of marine environment data is one of the important research goals in marine GIS. Several problems have blocked the effective sharing of marine environmental data in the past, such as load unbalance in data services, limited data sharing modes and unobvious data servers. With the advent of cloud computing technologies, great changes occurred in the modes for data sharing. Cloud computing relies on sharing of resources to achieve coherence and economies of scale; similar to a utility (like the electricity grid) over a network. The theoretical foundation of cloud computing therefore is the broader concept of converged infrastructure and shared services. This paper presents a data sharing architecture for the marine environment based on cloud computing. The architecture providers of aIaaS(Infrastructure as a Service) offer computers-either physical or more often virtual machines and other resources. The DaaS(Data as a Service) mode in the architecture is based on the concept that a product, data in this case, can be provided on demand to the user regardless of the geographic or organizational separation of provider and consumer. The PaaS(Platform as a Service) mode in the architecture providers deliver a computing platform, typically including operating system, programming language execution environment, database, and web server. Application developers can develop and run their software solutions on a cloud platform without the cost and complexity of buying and managing the underlying hardware and software layers. Through this architecture, the user acts as both user and provider. The architecture provides some core functions for user, such as data release, data needs release, data discovery, needs discovery and feedback functions. This marine environment data sharing mode can inspire marine researchers to contribute their data thus ensuring effective and sustainable data resource integration. A prototype system for marine environment information cloud computing platform was realized, and simultaneously the feasibility and practicality of our technical solution was tested.
  • [1]
    苏奋振, 周成虎, 杨晓梅, 等. 海洋地理信息系统理论基础及其关键技术研究[J]. 海洋学报, 2004, 26(6):22-28 http://www.cnki.com.cn/Article/CJFDTOTAL-SEAC200406003.htm

    Su Fenzhen, Zhou Chenghu, Yang Xiaomei, et al. Definition and Structure of Marine Geographic Information System[J]. Acta Oceanologica Sinica, 2004, 26(6):22-28 http://www.cnki.com.cn/Article/CJFDTOTAL-SEAC200406003.htm
    [2]
    He Yawen, Su Fenzhen, Du Yunyan, et al. Web-based Spatiotemporal Visualization of Marine Environment Data[J]. Chinese Journal of Oceanology and Limnology, 2010, 28(5):1086-1094. doi: 10.1007/s00343-010-0029-8
    [3]
    苏奋振, 周成虎, 杨晓梅. 海洋地理信息系统——原理, 技术与应用[M]. 北京:海洋出版社, 2005

    Su Fenzhen, Zhou Chenghu, Yang Xiaomei. The Theory, Technology and Application of Marine Geographic Information System[M]. Beijing:China Ocean Press, 2005
    [4]
    何亚文. 海洋GIS模型服务聚合应用研究[D]. 烟台:中国科学院烟台海岸带研究所, 2012

    He Yawen. Research of the Composition Techniques of Marine GIS Model Services[D]. Yantai:Yantai Institute of Coastal Zone Research Chinese Academy of Sciences, 2012
    [5]
    Schaap D M, Lowry R K. SeaDataNet-Pan-European infrastructure for marine and ocean data management:unified access to distributed datasets[J]. International Journal of Digital Earth, 2010, 3(S1):50-69 http://previous.seadatanet.org/content/download/8302/56207/version/1/file/sdn-iode50-march2011.pdf
    [6]
    Gillespie R, Butler M, Anderson N, Kucera H, LeBlanc C. MGDI:An Information Infrastructure to Support Integrated Coastal Management in Canada[J]. GeoCoast, 2000, 1(1):15-24. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.5116&rep=rep1&type=pdf
    [7]
    Wright D J. Spatial Data Infrastructures for Coastal Environments[M]//Remote Sensing and Geospatial Technologies for Coastal Ecosystem Assessment and Management. Berlin:Springer-Verlag, 2009
    [8]
    石绥祥. 基于网格的海洋环境数据共享与信息服务技术的研究[J]. 中国科技成果, 2013, 16(21):35-36

    Shi Suixiang. Technology Study of Ocean Evironment Information Visualization Based on Grid Service[J]. China Science and Technology Achievements, 2013, 16(21):35-36
    [9]
    何亚文,杜云艳,苏奋振,等. 利用空间信息网格的海流场远程可视化[J]. 武汉大学学报·信息科学版,2010,35(3):350-352 http://ch.whu.edu.cn/CN/abstract/abstract871.shtml

    He Yawen, Du Yunyan, Su Fenzhen, et al. Remote Visualizations of Sea Flow Field with Spatial Information Grids[J]. Geomatics and Information Science of Wuhan University, 2010,35(3):350-352 http://ch.whu.edu.cn/CN/abstract/abstract871.shtml
    [10]
    李德仁, 姚远, 邵振峰. 智慧城市中的大数据[J]. 武汉大学学报·信息科学版,2014, 39(6):631-6400 http://ch.whu.edu.cn/CN/abstract/abstract2999.shtml

    Li Deren, Yao Yuan, Shao Zhenfeng et al. Big Data in Smart City[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6):631-640 http://ch.whu.edu.cn/CN/abstract/abstract2999.shtml
    [11]
    Jadeja Y, Modi K. Cloud Computing-Concepts, Architecture and Challenges[C]. The 2012 International Conference on Computing, Electronics and Electrical Technologies, Nagercoil, Tamil Nadu, India, 2012
    [12]
    罗军舟, 金嘉晖, 宋爱波, 等. 云计算:体系架构与关键技术[J]. 通信学报,2011,32(7):3-21 http://www.cnki.com.cn/Article/CJFDTOTAL-TXXB201107003.htm

    Luo Junzhou, Jin Jiahui, Song Aibo, et al. Cloud Computing:Architecture and Key Technologies[J]. Journal on Communications, 2011,32(7):3-21 http://www.cnki.com.cn/Article/CJFDTOTAL-TXXB201107003.htm
    [13]
    王笑宇, 程良伦. 云计算下的多源信息资源云体系及云服务模型研究[J]. 计算机应用研究, 2014,31(3):784-788 http://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201403036.htm

    Wang Xiaoyu, Cheng Lianglun, Study of Multi-source Information Resources Cloud Systems and Cloud Services Model on Cloud Computing[J]. Application Research of Computers, 2014,31(3):784-788 http://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201403036.htm
    [14]
    Jeaha Y, Anand R, Hobson S, et al. Data Service Portal for application integration in cloud computing[C]. The 8th International Conference & Expo on Emerging Technologies for a Smarter World, Long Island, New York, 2011
    [15]
    王涛, 姚世红, 徐正全, 等. 云存储中面向访问任务的小文件合并与预取策略[J]. 武汉大学学报·信息科学版, 2013,38(12):1504-1508 http://ch.whu.edu.cn/CN/abstract/abstract2840.shtml

    Wang Tao, Yao Shihong, Xu Zhengquan, et al. A Small File Merging and Prefetching Strategy Based on Access Task in Cloud Storage[J]. Geomatics and Information Science of Wuhan University, 2013,38(12):1504-1508 http://ch.whu.edu.cn/CN/abstract/abstract2840.shtml
  • Related Articles

    [1]WANG Nan, LI Yongsheng, SHEN Wenhao, JIANG Wenliang, LI Qiang, JIAO Qisong. Source Parameters and Rapid Simulation of Strong Ground Motion of the Ms6.8 Earthquake on January 7, 2025 in Dingri (Xizang,China) Derived from InSAR Observation[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 404-411. DOI: 10.13203/j.whugis20250022
    [2]LIU Xiaojie, ZHAO Chaoying, LI Bin, WANG Wenda, ZHANG Qin, GAO Yang, CHEN Liquan, WANG Baohang, HAO Junming, YANG Xiaohui. Identification and Dynamic Deformation Monitoring of Active Landslides in Jishishan Earthquake Area (Gansu, China) Using InSAR Technology[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 297-312. DOI: 10.13203/j.whugis20240054
    [3]YANG Mengshi, LIAO Mingsheng, CHANG Ling, HANSSEN Ramon F.. Interpretation of Multi-epoch InSAR Deformation for Urban Scenes: A Problem Analysis and Literature Review[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10): 1643-1660. DOI: 10.13203/j.whugis20230289
    [4]CHEN Mingkai, XU Guangyu, WANG Leyang. InSAR 3D Coseismic Surface Deformation Inversion: A Combination Method Considering Deformation Gradient[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1349-1358. DOI: 10.13203/j.whugis20220284
    [5]XIAO Ruya, HE Xiufeng. Deformation Monitoring of Reservoirs and Dams Using Time-Series InSAR[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1334-1341. DOI: 10.13203/j.whugis20170327
    [6]LIU Qi, YUE Guosen, DING Xiaobing, YANG Kun, FENG Guangcai, XIONG Zhiqiang. Temporal and Spatial Characteristics Analysis of Deformation Along Foshan Subway Using Time Series InSAR[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1099-1106. DOI: 10.13203/j.whugis20190025
    [7]CAO Haikun, ZHAO Lihua, ZHANG Qin, QU Wei, NIE Jianliang. Ascending and Descending Orbits InSAR-GPS Data Fusion Method with Additional Systematic Parameters for Three-Dimensional Deformation Field[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1362-1368. DOI: 10.13203/j.whugis20160461
    [8]LI Peng, LI Zhenhong, LI Tao, SHI Chuang, LIU Jingnan. Wide-Swath InSAR Geodesy and Its Applications to Large-Scale Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1195-1202. DOI: 10.13203/j.whugis20150587
    [9]XU Caijun, HE Ping, WEN Yangmao, ZHANG Lei. Coseismic Deformation and Slip Distribution for 2011 Tohoku-Oki Mw 9.0 Earthquake:Constrained by GPS and InSAR[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1387-1391.
    [10]XU Caijun, HE Ping, WEN Yangmao, YANG Yonglin. Crustal Deformation Monitoring of Xianshuihe Fault by CR-InSAR[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 302-305.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (2075) PDF downloads (488) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return