YIN Lingzhi, ZHU Jun, WANG Jinhong, LI Yi, XU Zhu, CAO Zhenyu. Real-time Simulation and Analysis of Dam-break Flood Routing Based on GPU-CA Model[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1123-1129. DOI: 10.13203/j.whugis20140302
Citation: YIN Lingzhi, ZHU Jun, WANG Jinhong, LI Yi, XU Zhu, CAO Zhenyu. Real-time Simulation and Analysis of Dam-break Flood Routing Based on GPU-CA Model[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1123-1129. DOI: 10.13203/j.whugis20140302

Real-time Simulation and Analysis of Dam-break Flood Routing Based on GPU-CA Model

Funds: 

The National Key Basic Research Program of China,No.2015CB954101;the National Natural Science Foundationof China,Nos.41271389,41001252; Special Fund by Surveying & Mapping and Geoinformation Research in the Public Interest,No.201412010;the Graduate Innovation Fund of Southwest Jiaotong University,No.YC201414233.

More Information
  • Author Bio:

    YIN Lingzhi,PhD candidate,specializes in virtual geographic environment and 3DGIS.

  • Corresponding author:

    ZHU Jun,PhD,associate professor.

  • Received Date: April 13, 2014
  • Revised Date: August 04, 2015
  • Published Date: August 04, 2015
  • Based on the natural similarity between the parallel computing features of cellular automataand the parallel computing architecture of the CUDA,a dam-break flood routing computing modelbased on GPU-CA is proposed.Key technologies including cellular automata(CA)model of dam-break flood routing,GPU model mapping method,calculation optimization method,and GPU/CPUcollaborative implementation for dam-break flood routing simulation and analysis are discussed in de-tail.Finally,aprototype system was developed and a case study region selected for carrying out a pre-liminary experiment.As compared to the CPU-CA model computing,the experimental results showedthat the dam-break flood routing computing based on GPU-CA model can greatly improve the computing efficiency,and also ensured the validity of the simulation results.Speedup can be improved by in-creasing the cellular grid resolution.When the cellular grid size was 10m,the speedup of model calcu-lation reached 15.9times,which can support real-time simulation analysis and risk assessment fordam-break flood routing.
  • [1]
    Li Xia,Li Dan,Liu Xiaoping,et al.GeographicalSimulation and Optimization System(GeoSOS)andIts Cutting-edge Researches[J].Progress in Geog-raphy,2009,24(8):899-907(黎夏,李丹,刘小平,等.地理模拟优化系统 GeoSOS及前沿研究[J].地球科学进展,2009,24(8):899-907)[2] Zhou Chenghu,Sun Zhanli,Xie Yichun.Geograph-ic Cellular Automata Research[M].Beijing:SciencePress,2001(周成虎,孙战利,谢一春.地理元胞自动机研究[M].北京:科学出版社,2001)[3] Zhang Shanshan.CA-based Modeling of Spatio-tem-poral Process Simulation[J].Geomatics and Infor-mation Science of Wuhan University,2004,29(2):175-178(张山山.基于CA的时空过程模拟建模方法[J].武汉大学学报·信息科学版,2004,29(2):175-178)[4] SantéI,García A M,Miranda D,et al.CellularAutomata Models for the Simulation of Real-WorldUrban Processes:A Review and Analysis[J].Landscape and Urban Planning,2010,96(2):108-122[5] Liu Yilun,Li Xia.Knowledge Transfer and Adap-tation for Urban Simulation Cellular AutomataModel Base on Multi-source Trada Boost Algorithm[J].Geomatics and Information Science of WuhanUniversity,2014,39(6):695-700(刘轶伦,黎夏.利用多源领域知识迁移CA的城市建设用地模拟[J].武汉大学学报·信息科学版,2014,39(6):695-700)[6] Yang Qingsheng,Li Xia,Shi Xun.Cellular Autom-ata for Simulating Land Use Changes Based on Sup-port Vector Machines[J].Computers &Geosci-ences,2008,34(6):592-602[7] Yang Xiaoxiong,Liu Yaolin,Wang Xiaohong,et al.Land Utility Planning Layout Model Based onConstrained Conditions Cellular Automata[J].Geo-matics and Information Science of Wuhan Univer-sity,2007,32(12):1 164-1 167(杨小雄,刘耀林,王晓红,等.基于约束条件的元胞自动机土地利用规划布局模型[J].武汉大学学报·信息科学版,2007,32(12):1 164-1 167)[8] Fang Weifeng,Yang Lizhong,Fan Weicheng.Sim-ulation of Bi-direction Pedestrian Movement Using aCellular Automata Model[J].Physica A:Statisti-cal Mechanics and its Applications,2003,321(3):633-640[9] Wang Haijun,Zhang Wenting,Chen Yingying,etal.Fire Spreading Model Based on CA Scope[J].Geomatics and Information Science of Wuhan Uni-versity,2011,36(5):575-578(王海军,张文婷,陈莹莹,等.利用元胞自动机作用域构建林火蔓延模型[J].武汉大学学报·信息科学版,2011,36(5):575-578)[10] Li Zonghua,Ye Zhengwei.Study on Flood Sprea-ding Model Hongze Lake Based on Cellular Automa-ta[J].Journal of Computer Applications,2007,27(3):718-720(李宗花,叶正伟.基于元胞自动机的洪泽湖洪水蔓延模型研究[J].计算机应用,2007,27(3):718-720)[11] Wang Wei,Li Xin,Chen Nengcheng,et al.Com-puting River Storage Based on Cellular Automata [J].Geomatics and Information Science of WuhanUniversity,2013,38(2):235-239(王伟,李欣,陈能成,等.利用元胞自动机计算河道槽蓄量[J].武汉大学学报·信息科学版,2013,38(2):235-239)[12] Li Yi,Gong Jianhua,Zhu Jun,et al.Spatiotempo-ral Simulation and Risk Analysis of Dam-breakFlooding Based on Cellular Automata[J].Interna-tional Journal of Geographical Information Sci-ence,2013,27(10):2 043-2 059[13] Li Yi,Gong Jianhua,Zhu Jun,et al.Efficient DamBreak Flood Simulation Methods for Developing aPreliminary Evacuation Plan After the WenchuanEarthquake[J].Natural Hazards &Earth SystemSciences,2012,12(1):97-106[14] Humberto A G,Jochen E S,Brett F S.Two-di-mensional,High-resolution Modeling of Urban Dam-break Flooding:a Case Study of Baldwin Hills,California[J].Advances in Water Resources,2009,32(8):1 323-1 335[15] Zhu Jun,Hu Ya,Li Yi,et al.Risk Assessment ofDam-break in Barrier Lake Based on Virtual Geo-graphic Environment[J].Chinese High TechnologyLetters,2012,22(3):276-281(朱军,胡亚,李毅,等.基于虚拟地理环境的堰塞湖溃坝风险评估[J].高技术通讯,2012,22(3):276-281)[16] Lu Fengshun,Song Junqiang,Yin Fukang,et al.Survey of CPU/GPU Synergetic Parallel Computing[J].Computer Science,2011,38(3):5-9(卢风顺,宋君强,银福康,等.CPU/GPU 协同并行计算研究综述[J].计算机科学,2011,38(3):5-9)[17] Li Dan,Li Xia,Liu Xiaoping,et al.GPU-CAModel and Large-scale Land-use Change Simulation[J].Chinese Science Bulletin,2012,57(11):959-969(李丹,黎夏,刘小平,等.GPU-CA模型及大尺度土地利用变化模拟[J].科学通报,2012,57(11) :959-969)[18] Xiao Han.Research on High Efficiency Heteroge-neous Parallel Computing Based on CPU+GPU inImage Matching[D].Wuhan:Wuhan University,2011(肖汉.基于CPU+ GPU的影像匹配高效能异构并行计算研究[D].武汉:武汉大学,2011)[19] Yang Jingyu,Zhang Yongsheng,Li Zhengguo,etal.GPU-CPU Cooperate Processing of RS ImageOrtho-rectification[J].Geomatics and InformationScience of Wuhan University,2011,36(9):1 043-1 046(杨靖宇,张永生,李正国,等.遥感影像正摄纠正的GPU-CPU协同处理研究[J].武汉大学学报· 信息科学版,2011,36(9):1 043-1 046)[20] Liu Junzhi,Zhu Axing,Qin Chengzhi,et al.Re-view on Parallel Computing of Distributed Hydro-logical Models[J].Progress in Geography,2013,32(4):538-547(刘军志,朱阿兴,秦承志,等.分布式水文模型的并行计算研究进展[J].地理科学进展,2013,32(4):538-547)[21] Chen Zhaoxi,Meng Xiaohong,Guo Lianghui,etal.Three-dimensional Fast Forward Modeling andthe Inversion Strategy for Large Scale Gravity DataBased on GPU[J].Chinese Journal of Geophysics,2013,55(12):4 069-4 077(陈召曦,孟小红,郭良辉,等.基于GPU并行的重力、重力梯度三维正演快速计算及反演策略[J].地球物理学报,2013,55(12) :4 069-4 077)[22] Yang Mujin,Yu Ce,Sun Jizhou,et al.GAISP:GPU Accelerated Astronomical Image SubtractionPhotometry Algorithm[J].Application Researchof Computers,2011,28(10):3 940-3 943(杨沐津,于策,孙济洲,等.GAISP:一种GPU加速的天文图像相减测光算法倡[J].计算机应用研究,2011,28(10):3 940-3 943)[23] Jin Hailiang,Lu Xiaoping,Liu Huijie.Large-scaleTerrain Realistic Rendering Based on ProgrammableGPU Hardware[J].Geomatics and InformationScience of Wuhan University,2010,35(2):143-146(靳海亮,卢小平,刘慧杰.利用可编程GPU硬件进行大规模真实感地形绘制[J].武汉大学学报·信息科学版,2010,35(2):143-146)[24] Zhang Shu,Chu Yanli.GPU High PerformanceComputing of CUDA[M].Beijing:China Water-Power Press,2009(张舒,褚艳利.GPU高性能运算之 CUDA[M].北京:中国水利水电出版社,2009)[25] Shane Cook.CUDA Programming:A Developer’sGuide to Parallel Computing with GPUs[M].Bei-jing: Mechanical Industry Press,2014 (ShaneCook.CUDA并行程序设计:GPU编程指南[M].北京:机械工业出版社,2014)[26] Xiao Han,Zhou Qinglei,Zhang Zuxun.ParallelAlgorithm of Haris Corner Detection Based onMulti-GPU[J].Geomatics and Information Scienceof Wuhan University,2012,37(7):876-881(肖汉,周清雷,张祖勋.基于多GPU的 Harris角点检测并行算法[J].武汉大学学报·信息科学版,2012,37(7):876-881)
  • Related Articles

    [1]ZHOU Fangbin, XIAO Zhiwen, LIU Xuejun, MA Guowei, ZHANG Shanshan. Mountain Peak Extraction of Grid DEM Based on Aspect Distribution Feature[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3): 419-425. DOI: 10.13203/j.whugis20210479
    [2]BIAN Weiwei, WU Jicang, ZHANG Lei, GAO Yu. Temporal and Spatial Statistical Analysis of Strong Earthquakes and Spatial Distribution Characteristics of InSAR Coseismic Deformation Field[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 875-886. DOI: 10.13203/j.whugis20220176
    [3]WANG Haiqi, CHEN Ran, WEI Shiqing, GUI Li, FEI Tao. Mining Emotional Geography Features Based on Chinese Weibo Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 699-708. DOI: 10.13203/j.whugis20180138
    [4]YANG Jing, CHENG Changxiu, LI Xiaolan, CHEN Chi. A Similarity Evaluation Method on Spatial Patterns of Network Structures: A Case Study About Beijing Traffic-network Backbones from 1938 to 2014[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12): 1593-1598. DOI: 10.13203/j.whugis20140569
    [5]YANG Xiguang, HUANG Haijun, LIU Yanxia, YAN Liwen. Direction Characteristic of Radiation Energy and Transmission Characteristic of Waters at Water-air Surface[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 1003-1008.
    [6]GUO Yangjie, HONG Song, ZHUANG Yanhua, FENG Nan. Temporal Variation and Spatial Distribution of Atmospheric Aerosols over Hubei Province[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11): 1381-1385.
    [7]SUN Jianguo, AI Tinghua, WANG Pei, ZHAO Chuanyan. Assessing Vegetation Degradation Based on NDVI-climate Variables Feature Space[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6): 573-576.
    [8]RUAN Zhimin, SUN Zhenbing. Spatial Information Publication Based on Oracle Spatial and SVG[J]. Geomatics and Information Science of Wuhan University, 2004, 29(2): 161-164.
    [9]LU Anmin, LI Chengming, LIN Zongjian, JIN Yimin. Spatial Distribution of Statistical Population Data[J]. Geomatics and Information Science of Wuhan University, 2002, 27(3): 301-305.
    [10]LU Yi, ZHAI Jingsheng, DU Jinghai, LI Shujun. Recognition,Measurement and Generalization for Point Cluster Features in Digital Nautical Chart[J]. Geomatics and Information Science of Wuhan University, 2001, 26(2): 133-139.
  • Cited by

    Periodical cited type(13)

    1. 戴佩玉,李世忠,季顺平,任妮. 一种基于域自适应泛化增强的云检测方法. 武汉大学学报(信息科学版). 2025(01): 110-119 .
    2. 徐梓川,龚晓峰. 基于语义指导和自适应卷积的遥感云检测算法. 电子测量技术. 2024(01): 136-143 .
    3. 李长萍,于大海,郭豪,李杰,胡滨. 复杂场景下多重损失的步态识别系统的实现. 软件. 2023(05): 11-18 .
    4. 刘广进,王光辉,毕卫华,刘慧杰,杨化超. 基于DenseNet与注意力机制的遥感影像云检测算法. 自然资源遥感. 2022(02): 88-96 .
    5. 黄学飞,梁昌远,郭杰. 融合注意力机制的LandSat8遥感影像云检测算法. 电脑知识与技术. 2022(23): 63-65 .
    6. 黄宇,潘励. 基于显著性图像与纹理特征的遥感影像云检测. 测绘地理信息. 2021(02): 16-19 .
    7. 王亚利,都伟冰,王双亭. 高斯混合模型自动阈值法遥感冰川信息提取. 遥感学报. 2021(07): 1434-1444 .
    8. 王明,刘正佳,陈元琰. 基于Sentinel-2波段/产品的图像云检测效果对比研究. 遥感技术与应用. 2020(05): 1167-1177 .
    9. 刘云峰,杨珍,韩骁,付俊. 国产高分辨率卫星影像云检测方法分析. 测绘通报. 2020(11): 66-70 .
    10. 徐冬宇,厉小润,赵辽英,舒锐,唐琪佳. 基于光谱分析和动态分形维数的高光谱遥感图像云检测. 激光与光电子学进展. 2019(10): 93-101 .
    11. 余长慧,于海威,张文,孟令奎. 神经网络支持下的Sentinel-2卫星影像自动云检测. 测绘通报. 2019(08): 39-43 .
    12. 董志鹏,王密,李德仁,王艳丽,张致齐. 利用对象光谱与纹理实现高分辨率遥感影像云检测方法. 测绘学报. 2018(07): 996-1006 .
    13. 张波,刘鹤飞,王坤. 异分布混合模型及其参数的贝叶斯估计. 曲靖师范学院学报. 2018(06): 1-4 .

    Other cited types(14)

Catalog

    Article views (1509) PDF downloads (331) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return