WANG Yupu, LV Zhiping, CHEN Zhengsheng, HUANG Lingyong, LI Linyang, GONG Xiaochun. A New Data Preprocessing Method for Satellite Clock Bias and Its Application in WNN to Predict Medium-term and Long-term Clock Bias[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 373-379. DOI: 10.13203/j.whugis20140216
Citation: WANG Yupu, LV Zhiping, CHEN Zhengsheng, HUANG Lingyong, LI Linyang, GONG Xiaochun. A New Data Preprocessing Method for Satellite Clock Bias and Its Application in WNN to Predict Medium-term and Long-term Clock Bias[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 373-379. DOI: 10.13203/j.whugis20140216

A New Data Preprocessing Method for Satellite Clock Bias and Its Application in WNN to Predict Medium-term and Long-term Clock Bias

Funds: The National Natural Science Foundation of China, No. 41274015; the National High Technology Research and Development Program of China (863 Program), No. 2013AA122501; the Open Research Foundation of State Key Laboratory of Geo-information Engineering, No.SKLGIE 2015-M-1-6.
More Information
  • Received Date: October 18, 2014
  • Published Date: March 04, 2016
  • In order to improve the prediction precision of navigation satellite clock bias in the medium and long term, we design a new prediction model using a wavelet neural network based on a new data preprocessing method, aimed at processing the single difference sequence of satellite clock bias data. Specifically, this model firstly makes difference between two values of adjacent epoch for the given clock bias data, thus obtaining the corresponding single difference sequence, and then uses the proposed preprocessing method to process the sequence, and adopts the preprocessed sequence when modeling a wavelet neural network to predict the following medium- and long-term sequences. Finally,the proposed model restores the predicted sequences to the corresponding prediction clock bias. Using clock bias data from satellite-bone rubidium clocks in GPS, we conducted medium- and long-term prediction tests for the new method, simultaneously comparing it with three common prediction methods ;the quadratic polynomial model, grey model, and Kalman filter model. The results show that the new method can effectively reduce the prediction error in the medium- and long-term satellite clock bias prediction.
  • [1]
    Xi Chao, Cai Chenglin, Li Simin, et al. Long-term Satellite Clock Bias Prediction Based on ARMA Model[J]. Acta Astronomica Sinica, 2014,55(1): 78-89 (席超,蔡成林,李思敏,等.基于ARMA模型的导航卫星钟差长期预报[J].天文学报,2014,55(1): 78-89)
    [2]
    Guo Hairong. Study on the Analysis Theories and Algorithms of the Time and Frequency Characterization for Atomic Clocks of Navigation Satellite[D].Zhengzhou: Information Engineering University, 2006 (郭海荣.导航卫星原子钟时频特性分析理论与方法研究[D].郑州:信息工程大学,2006)
    [3]
    Cui Xianqing, Jiao Wenhai. Grey System Model for the Satellite Clock Error Predicting[J]. Geomatics and Information Science of Wuhan University, 2005, 30(5): 447-450 (崔先强,焦文海.灰色系统模型在卫星钟差预报中的应用[J].武汉大学学报·信息科学版,2005,30(5):447-450)
    [4]
    Zheng Zuoya, Dang Yamin, Lu Xiushan,et al. Prediction Model with Periodic Item and Its Application to the Prediction of GPS Satellite Clock Bias[J]. Acta Astronomica Sinica, 2010, 51(1):95-102(郑作亚,党亚民,卢秀山,等.附有周期项的预报模型及其在GPS卫星钟差预报中的应用研究[J].天文学报,2010,51(1):95-102)
    [5]
    Zhao Liang, Lan Xiaoqi, Sheng Jianyue. Application of ARIMA Model in Satellite Clock Error Forecasting[J]. Journal of Water Resources and Architectural Engineering, 2012,10(1):135-137(赵亮,兰孝奇,盛建岳.ARIMA模型在卫星钟差预报中的应用[J].水利与建筑工程学报,2012,10(1):135-137)
    [6]
    Zhu Xiangwei, Xiao Hua. The Kalman Algorithm Used for Satellite Clock Offset Prediction and Its Performance Analysis[J]. Journal of Astronautics, 2008, 29(3): 966-970 (朱祥维,肖华.卫星钟差预报的Kalman算法及其性能分析[J].宇航学报,2008,29(3):966-970)
    [7]
    Lei Yu, Zhao Danning. Clock Error Prediction Using Least Squares Support Vector Machines[J]. Journal of Geodesy and Geodynamics, 2013,33(2):91-95(雷雨,赵丹宁.基于最小二乘支持向量机的钟差预报[J].大地测量与地球动力学,2013,33(2):91-95)
    [8]
    Wang Yupu, Lv Zhiping, Chen Zhengsheng, et al. Research the Algorithm of Wavelet Neural Network to Predict Satellite Clock Bias[J].Acta Geodaetica et Cartographica Sinica, 2013,42(3):323-330(王宇谱,吕志平,陈正生,等.卫星钟差预报的小波神经网络算法研究[J].测绘学报,2013,42(3):323-330)
    [9]
    Guo Hairong, Yang Sheng, Yang Yuanxi, et al. Numerical Prediction Methods for Clock Difference Based on Two-Way Satellite Time and Frequency Transform Data[J].Geomatics and Information Science of Wuhan University, 2007, 32(1): 43-46 (郭海荣,杨生,杨元喜,等.基于卫星双向时间频率传递进行钟差预报的方法研究[J].武汉大学学报·信息科学版, 2007, 32(1): 43-46)
    [10]
    Zheng Zuoya, Chen Yongqi, Lu Xiushan. An Improved Grey Model for the Prediction of Real-Time GPS Satellite Clock Bias[J]. Acta Astronomica Sinica, 2008, 49(3): 306-320(郑作亚,陈永奇,卢秀山.灰色模型修正及其在实时GPS 卫星钟差预报中的应用研究[J].天文学报,2008,49(3):306-320)
    [11]
    Lu Xiaofeng, Yang Zhiqiang, Jia Xiaolin, et al. Parameter Optimization Method of Gray System Theory for the Satellite Clock Error Predicating [J].Geomatics and Information Science of Wuhan University, 2008, 33(5): 492-495(路晓峰,杨志强,贾晓林,等.灰色系统理论的优化方法及其在卫星钟差预报中的应用[J].武汉大学学报·信息科学版,2008,33(5):492-495)
    [12]
    Zhang Qinghua, Sui Lifen, Mu Zhongkai. A GPS Precise Clock Errors Prediction Models Based on Wavelet and ARMA[J]. Journal of Geodesy and Geodynamics, 2010, 30(6): 100-104(张清华,隋立芬,牟忠凯.基于小波与ARMA模型的卫星钟差预报方法[J].大地测量与地球动力学,2010,30(6):100-104)
    [13]
    Wang Jigang. Research on Time Comparison Based on GPS Precise Point Positioning and Atomic Clock Prediction[D]. Beijing:Graduate School of CAS, 2010(王继刚.基于GPS精密单点定位的时间比对与钟差预报研究[D].北京:中国科学院研究生院,2010)
    [14]
    Lei Yu, Zhao Danning, Li Bian, et al. Prediction of Satellite Clock Bias Based on Wavelet Transform and Least Squares Support Vector Machines[J]. Geomatics and Information Science of Wuhan University, 2014, 39(7): 815-819(雷雨,赵丹宁,李变,等.基于小波变换和最小二乘支持向量机的卫星钟差预报[J].武汉大学学报·信息科学版, 2014, 39(7): 815-819)
    [15]
    Wang Yupu, Lv Zhiping, Cui Yang, et al. Predicting Navigation Satellite Clock Bias Using Agenetic Wavelet Neural Network[J]. Geomatics and Information Science of Wuhan University, 2014, 39(7): 809-814 (王宇谱,吕志平,崔阳,等.利用遗传小波神经网络预报导航卫星钟差[J].武汉大学学报·信息科学版, 2014, 39(7): 809-814)
    [16]
    Feng Suiliang.Study on the Methods of Data Preprocessing and Performance Analysis for Atomic Clocks[D]. Zhengzhou:Information Engineering University,2009 (冯遂亮.原子钟数据预处理与钟性能分析方法研究[D].郑州:信息工程大学,2009)
  • Related Articles

    [1]WANG Xu, CHAI Hongzhou, CHONG Yang, LI Jinsheng. A New Data Preprocessing Method for BeiDou Satellite Clock Bias[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1840-1846. DOI: 10.13203/j.whugis20200232
    [2]wang yupu, lv zhiping,  cui yang,  lv hao,  li linyang. predicting navigation  satellite clock bias using agenetic wavelet neural network[J]. Geomatics and Information Science of Wuhan University, 2014, 39(7): 809-814.
    [3]XU Chuang, LUO Zhicai, LIN Xu, ZHOU Boyang. Automatic Preprocessing of Tidal Gravity Observation Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 157-161.
    [4]ZHANG Zhenglu, WANG Xiaomin, DENG Yong, XIE Niansheng. Application of Fuzzy Neural Network in Deformation Analysis and Prediction[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 6-8.
    [5]DENG Xingsheng, WANG Xinzhou. Application of Dynamic Neural Network in Prediction Model[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1): 93-96.
    [6]XU Yanfang, LIU Wenyao, WU Bing, HUANG Min. Application of Neural Network in Color Conversion[J]. Geomatics and Information Science of Wuhan University, 2006, 31(9): 799-801.
    [7]YU Liang, BIAN Fuling. Application of Rough Set-Based Neural Network in Forest Fire Alarm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(8): 720-723.
    [8]WANG Xinzhou DENG Xingsheng, . Fuzzy Neural Network Modeling for Dam Deformation Prediction[J]. Geomatics and Information Science of Wuhan University, 2005, 30(7): 588-591.
    [9]HU Yaogai, LI Wei, HU Jiming. An Artificial Neural Network with Improved Activation Function and Its Application[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10): 916-919.
    [10]HASI Bagan, MA Jianwen, LI Qiqing, DAI Qin. Dimension Reduction of Self-organized Neural Network Classification for Multi-band Satellite Data[J]. Geomatics and Information Science of Wuhan University, 2004, 29(5): 461-465. DOI: 10.13203/j.whugis2004.05.019
  • Cited by

    Periodical cited type(26)

    1. 朱宇航,李发利,李敬宇. 北斗卫星钟差预报的BP神经网络法. 测绘标准化. 2024(04): 29-34 .
    2. 王威,胡彩波,赵鹤,王宇谱,曹湘君,李林阳. 一种LSTM神经网络在卫星钟频率快速变化期间钟差预报的应用. 大地测量与地球动力学. 2023(04): 369-373 .
    3. Xu WANG,Hongzhou CHAI. Developing an Innovative High-precision Approach to Predict Medium-term and Long-term Satellite Clock Bias. Journal of Geodesy and Geoinformation Science. 2023(01): 47-58 .
    4. 王旭. BD/GPS卫星钟差短期预报模型分析. 辽宁科技学院学报. 2023(03): 9-14 .
    5. 王德盛,崔太岷,胡燕,杨玉锋. 多核相关向量机的BDS卫星钟差预报算法. 测绘科学. 2022(01): 40-48 .
    6. 黄博华,杨勃航,李明贵,郭忠楷,茅健佑,王宏. 一种改进的MAD钟差粗差探测方法. 武汉大学学报(信息科学版). 2022(05): 747-752+761 .
    7. 吉长东,朱锦帅,黎虎,张萌,吕广涵. BDS卫星钟差短期预报的LSTM算法. 导航定位学报. 2021(01): 44-52 .
    8. 王润,王井利,吕栋. 导航卫星钟差预报的Elman神经网络算法研究. 大地测量与地球动力学. 2021(03): 285-289+295 .
    9. 王威,许芬,王宇谱. 一种基于小波分析的卫星钟差数据粗差处理方法. 大地测量与地球动力学. 2021(06): 623-627 .
    10. 李光辉,张子豪,李佳蓉. 基于自适应小波神经网络在压制地震勘探低频噪声中的应用. 测试技术学报. 2021(03): 185-189+204 .
    11. 黄博华,李锡瑞,肖常富,何若枫,韩崇砚,郭志亮. BDS卫星钟差数据异常值类型识别的卷积神经网络方法. 武汉大学学报(信息科学版). 2021(06): 947-956 .
    12. 黄博华,杨勃航,李锡瑞,朱祥维,王宇谱. 顾及一次差分数据结构特征的钟差预报模型. 武汉大学学报(信息科学版). 2021(08): 1161-1169 .
    13. 王旭,柴洪洲,石明琛,种洋. 卫星钟差预报模型的分析与比较. 测绘科学技术学报. 2021(04): 350-354 .
    14. 胡燕,王德盛,杨玉锋. 基于EM算法优化相关向量机的BDS-3超快速钟差预报. 大地测量与地球动力学. 2021(12): 1230-1234 .
    15. 卿晨昕,欧吉坤,蒋可,邱封钦,赖祖龙. 谱投影梯度算法的GPS钟差短期预报应用. 测绘科学. 2021(12): 44-53 .
    16. 马朝忠,朱建青,韩松辉. 基于ARIMA模型的卫星钟差异常值探测的模型选择方法. 武汉大学学报(信息科学版). 2020(02): 167-172 .
    17. 王旭,柴洪洲,王昶. 卫星钟差预报的T-S模糊神经网络法. 测绘学报. 2020(05): 580-588 .
    18. 王旭,柴洪洲,王昶,种洋. 优选小波函数的小波神经网络预报GPS卫星钟差. 测绘学报. 2020(08): 983-992 .
    19. 王宇谱,张胜利,徐金锋,李博. 改进中位数方法的BDS卫星钟差数据预处理策略. 测绘科学. 2019(02): 109-115+127 .
    20. 马朝忠,李国重,张倩倩,李新娜. 北斗卫星钟差异常值处理的似然比方法. 测绘科学技术学报. 2019(03): 221-226 .
    21. 马朝忠,张倩倩,韩松辉,李新娜. 卫星钟差异常值探测的抗掩盖与淹没型算法. 测绘科学技术学报. 2019(04): 346-352 .
    22. 王建敏,黄佳鹏,刘梓然,祝会忠,马天明. 自适应卡尔曼滤波的电离层TEC预测模型改进. 导航定位学报. 2018(02): 121-127 .
    23. 李成龙,陈西宏,刘继业,吴文溢,刘赞. 利用自适应TS-IPSO优化的灰色系统预报卫星钟差. 武汉大学学报(信息科学版). 2018(06): 854-859 .
    24. 蔡成林,于洪刚,韦照川,潘军道. 基于Takagi-Sugeno模糊神经网络模型的卫星钟差预报方法. 天文学报. 2017(03): 113-126 .
    25. 王宇谱,吕志平,周海涛,王宁,翟树峰. 基于修正钟差一次差分数据的卫星钟差预报. 大地测量与地球动力学. 2016(12): 1073-1077 .
    26. 杨少尘,胡昌华,李红增. 基于Wiener过程的GPS校准晶振型频率源守频方法. 中国测试. 2016(06): 14-18 .

    Other cited types(15)

Catalog

    Article views (1606) PDF downloads (480) Cited by(41)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return