BAI Lin, LIU Panzhi, HUI Meng. SVM Classification of Hyperspectral Image Based on Wavelet Kernel Minimum Noise Fraction[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 624-628,644. DOI: 10.13203/j.whugis20140209
Citation: BAI Lin, LIU Panzhi, HUI Meng. SVM Classification of Hyperspectral Image Based on Wavelet Kernel Minimum Noise Fraction[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 624-628,644. DOI: 10.13203/j.whugis20140209

SVM Classification of Hyperspectral Image Based on Wavelet Kernel Minimum Noise Fraction

Funds: The National Natural Science Foundation of China, No. 51407012; the Special Fund for Basic Scientific Research of Central Colleges, Chang'an University, Nos. 310832163402, 310832161001.
More Information
  • Received Date: September 21, 2014
  • Published Date: May 04, 2016
  • Linear features extraction methods for hyperspectral imaging reduce feature class separability. Aiming to solve these problems, this paper introduces a novel kernel method based on minimum noise fraction transformation. This method focuses on the kernel function in the minimum noise fraction transformation and replacing the traditional kernel function with a wavelet kernel function. This new method improves the nonlinear mapping capability of kernel minimum noise fraction transformation by exploiting the features of multi-resolution analysis. Classification experiments on hyperspectral image data combined the novel kernel minimum noise fraction transformation and support vector machine; simulation results show that the wavelet kernel minimum noise fraction transformation method is suitable for the nonlinear characteristics of hyperspectral images. The proposed method was applied to HYDICE and AVIRIS data, and compared with other algorithms. Classification accuracy increased 3%-9%.
  • [1]
    Wang Yiting, Huang Shiqi, Liu Daizhi, et al. Research Advance on Band Selection-Based Dimension Reduction of Hyperspectral Remote Sensing Images[J]. Remote Sensing, Environment and Transportation Engineering,2012(1):1-4
    [2]
    Dopido I, Villa A, Plaza A, et al. A Quantitative and Comparative Assessment of Unmixing-Based Feature Extraction Techniques for Hyperspectral Image Classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2):421-435
    [3]
    Goetz A F H. Three Decades of Hyperspectral Remote Sensing of the Earth:A Personal View[J]. Remote Sensing of Environment, 2009, 113(1):5-16
    [4]
    Plaza A. Recent Advances in Techniques for Hyperspectral Image Processing[J]. Remote Sensing of Environment, 2009, 113(1):110-122
    [5]
    Bioucas-Dias J M, Plaza A, Camps-Valls G, et al. Hyperspectral Remote Sensing Data Analysis and Future Challenges[J]. Geoscience and Remote Sensing Magazine, 2013(2):6-36
    [6]
    Hosseini S A, Ghassemian H. A New Fast Algorithm for Multiclass Hyperspectral Image Classification with SVM[J]. International Journal of Remote Sensing, 2011, 32(23):8657-8683
    [7]
    Fauvel M, Chanussot J, Benediktsson J A. A Spatial spectral Kernel Based Approach for the Classification of Remote sensing Images[J]. Pattern Recognition, 2012,45:381-392
    [8]
    Chen Yi, Nasser M, Trac D T. Hyperspectral Image Classification via Kernel Sparse Representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013,51(1):217-231
    [9]
    Lin Na, Yang Wunian, Wang Bin. Hyperspecral Image Feature Extraction via Kernel Minimum Noise Fraction Transform[J]. Geomatics and Information Science of Wuhan University,2013,38(8):988-992(林娜,杨武年,王斌. 高光谱遥感影像核最小噪声分离变换特征提取[J]. 武汉大学学报\5信息科学版,2013,38(8):988-992)
    [10]
    Zhao Chunhui, Zhang Yi, Wang Yulei. Relevant Vector Machine Classification of Hyperspectral Image Based on Wavelet Kernel Principal Component Analysis[J]. Journal of Electronics & Information Technology, 2012,34(8):1905-1910(赵春晖,张焱,王玉磊. 基于小波核主成分分析的相关向量机高光谱图像分类[J]. 电子与信息学报,2012,34(8):1905-1910)
    [11]
    Wu Fangfang, Zhao Yinliang. Novel Reduced Support Vector Machine on Morlet Wavelet Kernel Function[J]. Control and Decision, 2006,21(8):848-856(武方方,赵银亮. 一种基于Morlet小波核的约简支持向量机[J]. 控制与决策, 2006, 21(8):848-856)
    [12]
    Wan Jiaqiang, Wang Yue, Liu Yu. Improvement of KPCA on Feature Extraction of Classification Data[J]. Computer Engineering and Design, 2010,31(18):4085-4088(万家强,王越,刘羽.改进KPCA对分类数据的特征提取[J]. 计算机工程与设计,2010,31(18):4085-4088)
    [13]
    Yang Guopeng, Yu Xuchu, Zhou Xin, et al. Hyperspectral Image Feature Extraction Based on Generalized Discriminant Analysis[J].Journal of Dalian Maritime University, 2008,34(8):59-63(杨国鹏,余旭初,周欣,等.基于广义判别分析的高光谱影像特征提取[J].大连海事大学学报,2008,34(3):59-63)
    [14]
    Chen J, Wang C,Wang R. Using Stacked Generalization to Combine SVMs in Magnitude and Shape Feature Spaces for Classification of Hyperspectral Date[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7):2193-2205
  • Related Articles

    [1]KUANG Cuilin, ZHANG Jinsheng, LU Chenlong, YI Zhonghai. Single-and Dual-Frequency Mixed Mode GPS Network for Ground Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 692-697. DOI: 10.13203/j.whugis20140051
    [2]RUAN Rengui, WU Xianbing, FENG Laiping. Comparison of Observation Models and Ionospheric Elimination Approaches for Single Frequency Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1023-1028.
    [3]TU Rui, HUANG Guanwen, ZHANG Qin, WANG Li. A New Algorithm on Ionospheric Delay Correction for Single Frequency GPS Receivers[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 667-670.
    [4]ZOU Xuan, JIANG Weiping, WANG Shunxi, LI Tao. GNSS Data Processing with Mixed Single and Dual Frequency Receivers for High Accuracy Near Real-time Weather Monitoring[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 58-62.
    [5]LI Wei, CHENG Pengfei, BI Jinzhong. Regional Ionosphere Delays' Calibration and Accuracy Assessment Based on Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1200-1203.
    [6]TU Rui, HUANG Guanwen, ZHANG Qin, WANG Li. The Research of Dual Frequency Solution Method for Single Frequency Precise Point Positioning(PPP) Based on SEID Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1187-1190.
    [7]SHI Chuang, GU Shengfeng, GENG Changjiang, SONG Weiwei. High-Precision Single-Frequency Point Positioning with Randomness of Ionosphere Delay Correction in Consideration[J]. Geomatics and Information Science of Wuhan University, 2011, 36(7): 807-810.
    [8]SONG Weiwei, SHI Chuang, YAO Yibin, YE Shirong. Ionosphere Delay Processing Methods and Positioning Precision of Single Frequency Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 778-781.
    [9]ZHOU Zebo, SHEN Yunzhong, LI Bofeng. Analysis of GPS Dual-frequency Single Differenced Receiver Hardware Delay[J]. Geomatics and Information Science of Wuhan University, 2009, 34(6): 724-727.
    [10]ZHANG Xiaohong, LI Zhenghang, CAI Changsheng. Study on Regional Ionospheric Model Using Dual-frequency GPS Measurements[J]. Geomatics and Information Science of Wuhan University, 2001, 26(2): 140-143,159.
  • Cited by

    Periodical cited type(4)

    1. 李精忠,高阿骥,陈凯,张勇. 一种面向DEM多尺度表达的傅里叶能量谱模型. 武汉大学学报(信息科学版). 2022(11): 1938-1945 .
    2. 刘凤梅,黎义勇,肖攀,曾敏. 基于DEM的珠江三角洲地区水文特征模拟与分析. 现代测绘. 2021(01): 31-34 .
    3. 王荣,闫浩文,王中辉. 等高线自动综合研究热点及趋势可视化分析. 测绘科学. 2021(10): 167-176+193 .
    4. 何振芳,郭庆春,赵牡丹,刘加珍,张菊,李雪飞,梁志萌. 基于小波分析的复杂地貌区DEM自动综合研究. 地理与地理信息科学. 2019(04): 57-63 .

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return