CHONG Yanwen, WANG Zewen, CHEN Rong, WANG Yingying. A Particle Filter Infrared Target Tracking Method Based on Multi-feature Adaptive Fusion[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 598-604. DOI: 10.13203/j.whugis20140185
Citation: CHONG Yanwen, WANG Zewen, CHEN Rong, WANG Yingying. A Particle Filter Infrared Target Tracking Method Based on Multi-feature Adaptive Fusion[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 598-604. DOI: 10.13203/j.whugis20140185

A Particle Filter Infrared Target Tracking Method Based on Multi-feature Adaptive Fusion

Funds: The National Natural Science Foundation of China, No. 41271398; the Fundamental Research Funds for the Central Universities, Nos. 2042014kf0242, 2042014kf0263.
More Information
  • Received Date: May 07, 2014
  • Published Date: May 04, 2016
  • In infrared target tracking it is difficult to predict the existence of background interference as there is a contradiction between the real-time and effectiveness of the algorithms. Hence this paper presents a particle filter tracking algorithm based on adaptive fusion of color features and edge features. Using the natural frame work of a particle filter, with infrared conditions it selects color features and edge features that best represent the target information to construct the multi-feature model of the target. According to the different feature separability of target and background, the weight of each feature component of a multi-feature is adaptively adjusted. This dynamic space model improves the particle filter tracking algorithm to predict the motion state of the particles to overcome the effects of environment mutations on tracking stability. Experimental results show that the proposed algorithm can overcome interference from all kinds of background clutter and noise ensuring tracking robustness and accuracy.
  • [1]
    Li Jianfu,Wang Yang. Pedestrian Tracking in Infrared Image Sequences using Wavelet Entropy Features[C].IEEE Second Asia-Pacific Conference on Computational Intelligence and Industrial Applications, Wuhan, 2009
    [2]
    van Koller N. An Adaptive Color-Based Particle Filter[J].Image and Vision Computing, 2012, 21(1):99-110
    [3]
    Vignon D, Lovell B C, Andrews R J. General Purpose Real-Time Object Tracking Using Hausdorff Transforms[C]. The 9th International Conference on IPMU, Annency, France, 2012
    [4]
    Liu Jin. Research and Implementation Based on Multi-feature Fusion Particle Filter Algorithm[J].Computer Measurement & Control, 2013, 11(5):1307-1309
    [5]
    Chen Shanjing. Study of Particle Filtering Algorithm Based on Multi-feature Fusion[J].Computer Engineering,2011, 37(7):179-180
    [6]
    Komeili M, Armanfard N, Kabir E. A Fuzzy Approach for Multi-feature Pedestrian Tracking with Particle Filter[J].IEEE International Symposium on Telecommunications, 2008,2(8):570-576
    [7]
    Yao Haitao, Zhu Fuxi, Chen Haiqiang. Face Tracking Based on Adaptive PSO Particle Filter[J].Geomatics and Information Science of Wuhan University,2012, 37(4):493-497(姚海涛,朱福喜,陈海强.一种自适应的PSO粒子滤波人脸视频跟踪方法[J].武汉大学学报·信息科学版,2012,37(4):493-497)
    [8]
    Iwata K, Hongo H, Yamamoto K, et al. Robust Facial Parts Detection by Using Four Directional Features and Relaxation Matching[J]. IEEJ Transactions on Electronics Information and Systems,2004, 124(3):706-712
    [9]
    Erdema E, Dubuissonb S, Blochc I.Visual Tracking by Fusing Multiple Cues with Context-Sensitive Reliabilities[J].Pattern Recognition, 2012, 45(5):1948-1959
    [10]
    Hiratsuka M. Pedestrian Detection for a Near Infrared Imaging System[C]. The 11th International IEEE Conference on Intelligent Transportation Systems, Beijing, 2008
    [11]
    Chen S Y. Kalman Filter for Robot Vision:A Survey[J]. IEEE Transactions on Industrial Electronics, 2011, 99:1-2
    [12]
    Wang Shupeng, Ji Hongbing. Based Target Tracking Method Color Space Model[J].Xi'an Electronic Science and Technology Report, 2009, 34(4):77-78
    [13]
    Jia Yonghong, Li Deren. An Approach of Classification Based on Pixel Level and Decision Level Fusion of Multi-source Images in Remote Sensing[J].Geomatics and Information Science of Wuhan University,2001,26(5),431-433(贾永红,李德仁.多源遥感影像像素级融合分类与决策级分类融合法的研究[J].武汉大学学报·信息科学版,2001,26(5):431-433)
    [14]
    Wang Huan,Wang Jiangtao,Ren Mingwu,et al.A Robust Multi-feature Fusion Target Tracking Algorithm[J].Chinese Journal of Image and Graphics, 2011,14(3):489-498(王欢, 王江涛, 任明武, 等.一种鲁棒的多特征融合目标跟踪新算法[J].中国图象图形学报, 2011, 14(3):489-498)
    [15]
    Komeili M, Armanfard N,Kabir E.A Fuzzy Approach for Multi-feature pedestrian tracking with particle filter[C]. Internatioal Symposium on Telecommunications, Tehran, Iran, 2012
    [16]
    Fen Xu,Zhao Lijuan.A Particle Filter Tracking Algorithm Based on Adaptive Feature Fusion Strategy[J].Intelligent Control and Automation,2012,8(12):4612-4615
    [17]
    Quadtrees M T. A Data Structure for Restoring Pare to Sets in Multi-object Evolutionary Algorithms with Elitism[M]. New York:Springer Verlag, 2005
    [18]
    Parsopoulos K E,Vrahati M N. Particle Swarm Optimizer in Noisy and Continuously Changing Environments[M]//Hamza M H. Intelligence and Soft Computing, Anaheim, CA:ACTA Press, 2001
  • Cited by

    Periodical cited type(10)

    1. 田宗正,黄信,陶昌鹏. 基于粒子滤波重采样的GNSS多路径修正方法. 全球定位系统. 2024(06): 36-46 .
    2. 张蕴绮,郭发勇,朱梓清,王亚民. 改进的多特征粒子滤波目标跟踪算法研究. 计算机测量与控制. 2023(12): 322-329+337 .
    3. 任帅军,韩裕生. 基于KCF的多个同构无人机目标跟踪算法. 舰船电子工程. 2022(03): 54-58+68 .
    4. 黄鹤,吴琨,李昕芮,王珺,王会峰,茹锋. 基于AMMFO优化的MAFPF车辆跟踪方法. 汽车工程. 2021(09): 1322-1327+1335 .
    5. 延淼,王宏艳. 红外序列图像点目标检测前跟踪算法研究综述. 兵器装备工程学报. 2020(02): 111-116 .
    6. 杨博,蔺素珍,禄晓飞,李大威,秦品乐,左健宏. 基于多特征融合与分层数据关联的空中红外多目标跟踪方法. 计算机应用. 2020(10): 3075-3080 .
    7. 昝孟恩,周航,韩丹,杨刚,许国梁. 粒子滤波目标跟踪算法综述. 计算机工程与应用. 2019(05): 8-17+59 .
    8. 程文,齐美彬. 多特征融合的粒子滤波红外单目标跟踪. 电脑知识与技术. 2018(14): 178-180+185 .
    9. 樊香所,徐智勇,张建林. 改进粒子滤波的弱小目标跟踪. 光电工程. 2018(08): 14-23 .
    10. 苏振威,谢林柏. 基于信息保留的自适应多特征融合目标跟踪. 小型微型计算机系统. 2017(10): 2291-2296 .

    Other cited types(16)

Catalog

    Article views (1486) PDF downloads (402) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return