ZHENG Bin, WANG Yu, OU Gang. Improving Real-Time Ionospheric Delay Extraction in Precise Point Positioning with Sidereal Filtering[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 983-988. DOI: 10.13203/j.whugis20140077
Citation: ZHENG Bin, WANG Yu, OU Gang. Improving Real-Time Ionospheric Delay Extraction in Precise Point Positioning with Sidereal Filtering[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 983-988. DOI: 10.13203/j.whugis20140077

Improving Real-Time Ionospheric Delay Extraction in Precise Point Positioning with Sidereal Filtering

Funds: 

The Program for New Century Excellent Talents in University No. NCET-04-0995

More Information
  • Received Date: June 10, 2014
  • Published Date: July 04, 2016
  • Uncombined precise point positioning (PPP) could be used to extract ionospheric delay with high accuracy. However, parameters estimation in PPP requires long converge time due to the high correlation between ionosphere and ambiguity parameters. Further more, the multipath effects at tracking station degrade the precision of code and phase measurements, thus impact the performance of PPP ionospheric delay estimation. For static observation stations, sidereal filtering could be used to eliminate multipath errors by taking advantage of the ground track repeat period of GPS satellites. After extracting the code and carrier phase residuals of the past few days in post-processing, multipath error correction model could be established with historical residual series by sidereal filtering, so as to improve the performance of real-time ionospheric delay estimation. Experiments with IGS observation data showed that with the application of sidereal filtering, real-time ionospheric delay extraction error decreased from 0.185 m to 0.028 m and convergence time of ionospheric parameters for newly rising satellites reduced from 80 minutes to 35 minutes. Improvements in single station ionosphere delay estimation could refine ionosphere model of local network. On the other hand, precise satellite slant ionosphere delay can be obtained at a lower elevation, which can reduce the layout density need of reference station network.
  • [1]
    张宝成, 欧吉坤, 李子申,等. 利用精密单点定位求解电离层延迟[J]. 地球物理学报, 2011,54(4):950-957

    Zhang Baocheng, Ou Jikun, Li Zhisheng, et al. Determination of Ionospheric Observables with Precise Point Positioning[J]. Chinese Journal of Geophysics, 2011,54(4):950-957
    [2]
    Carcanague S, Julien O, Vigneau W, et al. A New Algorithm for GNSS Precise Positioning in Constrained Area[C]. Proceedings of the 24th International Technical Meeting of the Institute of Navigation, San Diego, CA, 2011
    [3]
    Seepersad G, Bisnath S. Reduction of Precise Point Positioning Convergence Period[C]. Proceedings of the 25th International Technical Meeting of the Satellite Division of the Institute of Navigation, TN, 2012
    [4]
    Wen Z, Henkel P, Güunther C. Reliable Estimation of Phase Biases of GPS Satellites with a Local Reference Network[C]. The 53rd IEEE Intern. Symposium ELMAR, Zadar, Croatia, 2011
    [5]
    Brunini C, Azpilicueta F. GPS Slant Total Electron Content Accuracy Using the Single Layer Model Under Difierent Geomagnetic Regions and Ionospheric Conditions[J]. J Geod, 2010, 84: 293-304
    [6]
    Gelbed A. Applied Optimal Estimation[M]. Cambridge, Massachuserts: The MIT Press, 1974: 160-162
    [7]
    Takasu T. RTKLIB: Open Source Program Package for RTK-GPS[C]. FOSS4G 2009, Tokyo, Japan, 2009
    [8]
    Joz W, Hsieh C H. Statistical Modeling for the Mitigation of GPS Multipath Delays from Day-to-day Range Measurements[J]. J Geod, 2010(84):223-232
    [9]
    Choi K, Bilich A, Larson K M, et al. Modiifed Sidereal Filtering: Implications for High-rate GPS Positioning[J]. Geophys Research Letters, 2004, 31:1-4
    [10]
    Ragheb A E, Clarke P J, Edwards S J. GPS Sidereal Filtering: Coordinate and Carrier-Phase-Level Strategies[J]. Joural Geodesy, 2007, 81(5):325-335
    [11]
    殷海涛, 甘卫军, 肖根如. 恒星日滤波的修正以及对高频GPS定位的影响研究[J]. 武汉大学学报·信息科学版, 2011, 36(5):609-611

    Yin Haitao, Gan Weijun, Xiao Genru. Modified Sidereal Filtering and Its Effect on High-rate GPS Positioning[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5):609-611
  • Related Articles

    [1]LONG En, LÜ Shouye, QU Xiaofei, MENG Gang, LAI Guangling, YANG Yuke. Height Inversion Model of Oil Tank Using Satellite Imagery with Same Name Arc Distance[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3): 411-418. DOI: 10.13203/j.whugis20210239
    [2]LÜ Pinji, LI Zhengyuan, SUN Lingli, LIN Jun, TANG Lei, NI Yipeng. Analysis of Impact of the Tonga Volcanic Eruption in 2022 on the Strain Observation of Chinese Mainland[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 927-933. DOI: 10.13203/j.whugis20220174
    [3]LEI Xiangxu, SANG Jizhang, LI Zhenwei, CHEN Junyu, DU Jianli, HE Donglei. Association of Very-Short-Arc Angles Data for LEO Space Objects[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1526-1532. DOI: 10.13203/j.whugis20180386
    [4]LOU Yidong, YAO Xiuguang, LIU Yang, ZHENG Fu. Impact of Ambiguity Resolution and Arc Length on Regional Precise Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 249-254. DOI: 10.13203/j.whugis20140201
    [5]LIU Xiaoxia, JIANG Zaisen, WU Yanqiang. The Applicability of Kriging Interpolation Method in GPSVelocity Gridding and Strain Calculating[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 457-461. DOI: 10.13203/j.whugis20120086
    [6]WU Yanqiang, JIANG Zaisen, YANG Guohua, FANG Ying. Application and Method of GPS Strain Calculating in Whole Mode Using Multi-Surface Function[J]. Geomatics and Information Science of Wuhan University, 2009, 34(9): 1085-1089.
    [7]DING Kaihua, XU Cajjun. Current Crustal Strain Field in the Sichuan-Yunnan Area by Joint Inversion of GPS and Seismic Moment Tensor[J]. Geomatics and Information Science of Wuhan University, 2009, 34(3): 265-268.
    [8]ZHU Xinhui, SUN Fuping, QIN Yong. Establishment of Plate Motion Model by the Integrated Data of GPS and VLBI[J]. Geomatics and Information Science of Wuhan University, 2005, 30(7): 604-608.
    [9]DU Ruilin, QIAO Xuejun, YANG Shaomin, WANG Qi. Results of the Crustal Deformation by GPS Survey and Horizontal Strain Rate Fields in the Three Gorges Area[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 768-771.
    [10]Zhang Zuxun, Bao Xiuzhi, Cao Hui. Arc Spline and Arclet Processing[J]. Geomatics and Information Science of Wuhan University, 1994, 19(3): 189-193.
  • Cited by

    Periodical cited type(5)

    1. 黄少华,万永革,冯淦,李枭,关兆萱. 2022年9月17日中国台湾地震序列的触发机制及其动力学成因. 地质力学学报. 2023(05): 674-684 .
    2. 李之诺,卢佳遇,高锐,陈致同. 斜向聚合及弧后伸展作用对台湾北部-琉球地区的构造影响——砂箱模型实验的启示. 地球学报. 2022(05): 609-615 .
    3. 李建涛,刚慧龙. 基于ITRF14框架的URCORS坐标分析. 工程勘察. 2022(10): 62-66 .
    4. 高源,瞿伟,张勤,王庆良,郝明. GNSS揭示的汾渭盆地及周缘现今地壳运动与应变差异. 武汉大学学报(信息科学版). 2021(07): 1063-1070+1113 .
    5. 徐良叶,邵德盛,吴学群,牛甜. 最小二乘配置的云南区域形变与应变特征研究. 测绘科学. 2021(12): 16-23+74 .

    Other cited types(4)

Catalog

    Article views (1559) PDF downloads (247) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return