DUAN Yue, SHU Hong, HU Hongda, MA Guorui. Globle Temperature MODIS Data Interpolation with Fixed Rank Kriging[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1036-1041. DOI: 10.13203/j.whugis20140054
Citation: DUAN Yue, SHU Hong, HU Hongda, MA Guorui. Globle Temperature MODIS Data Interpolation with Fixed Rank Kriging[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1036-1041. DOI: 10.13203/j.whugis20140054

Globle Temperature MODIS Data Interpolation with Fixed Rank Kriging

Funds: The National Natural Science Foundation of China,No.41171313;Natural Science Foundation of Hubei Provincial, No.2014CFB725;Suzhou Science and Technology Program of Applied Basic Research,No.SYG201319.
More Information
  • Author Bio:

    DUAN Yue,master,specializes in spatio-temporal statistical analysis.

  • Corresponding author:

    SHU Hong,PhD,professor.

  • Received Date: January 15, 2014
  • Revised Date: August 04, 2015
  • Published Date: August 04, 2015
  • High-dimensional data interpolation is a basic content of big data analysis.The computa-tional cost of traditional Kriging is of order n3,which means computational complexity grows as thethird power rate along with the increase number of the observations.So Kriging computing time canhardly meet real-time applications.Thus,Fixed Rank Kriging(FRK)rises in response.To achievehigh computing speed,it simplifies computational complexity by reducing the dimensions of large-di-mensional matrix.Under the background of big data analysis,this paper uses FRK to do the statisti-cal modeling and implement interpolation analysis with the global MODIS temperature.It also givesout Root-Mean-Square standardized which equals to 1.0003through the cross-validation method,indi-cating that FRK can provide high accurate interpolation result.On the side of computational efficien-cy,with increasing data,the computational cost of FRK increases as a slow and steady speed while or-dinary kriging tends to an exponential growth.The conclusion can be drawn from two points above,that is,FRK can reduce computational complexity and shorten interpolation time with high predictionaccuracy when compared with ordinary kriging.
  • [1]
    Brooker P I,Li Xing.Kriging Method[J].Non-ferrous Mines,1980,4:12-15(Brooker P I,李行.克里金法[J].有色矿山,1980,4:12-15)[2] Davis J C,Sampson R J.Statistics and Data Analy-sis in Geology[M].USA:Johu Wiley &Sons Inc,2002[3] Zhang Renduo.Spatial Variation Theory and Appli-cation[M].Beijing:Science Press,2005(张仁铎.空间变异理论及应用[M].北京:科学出版社,2005)[4] Cressie N.The Origins of Kriging[J].Mathemati-cal Geology,1990,22(3):239-252[5] Odeh I O A,McBratney A B,Chittleborough D J.Further Results on Prediction of Soil Propertiesfrom Terrain Attributes:Heterotopic Cokriging andRegression-Kriging[J].Geoderma,1995,67(3):215-226[6] Li Sha,Shu Hong,Xu Zhengquan.Interpolation ofTemperature Based on Spatial-temporal Kriging[J].Geomatics and Information Science of Wuhan Uni-versity,2012,37(2):237-241(李莎,舒红,徐正全.利用时空Kriging进行气温插值研究[J].武汉大学学报·信息科学版,2012,37(2):237-241)[7] Liu Yan,Ruan Huihua,Zhang Pu,et al.KrigingInterpolation of Snow Depth at the North of Tians-han Mountains Assisted by MODIS Data[J].Geo-matics and Information Science of Wuhan Univer-sity,2012,37(4):403-405(刘艳,阮惠华,张璞,等.利用 MODIS数据研究天山北麓Kriging雪深插值[J].武汉大学学报·信息科学版,2012,37(4):403-405)[8] Zhuang Yating,Chen Xunzheng,Fan Shenglong,etal.Study on the Layout of Efficient Arable LandQuality Monitoring Samples Based on Kriging Inter-polation Method-Case Study in Jian′ou County[J].Subtropical Soil and Water Conservation,2013,25(2):17-22(庄雅婷,陈训争,范胜龙,等.基于Krig-ing插值的高效耕地质量监测点布设方式研究——— 以建瓯市为例[J].亚热带水土保持,2013,25(2):17-22)[9] Huang Wen.An Efficient Algorithm of Interpola-tion[J].Journal of Shanxi University of Technol-ogy,2002,18(1):30-32(黄文.一种高效的插值算法[J].陕西工学院学报,2002,18(1):30-32)[10] Miao Sha.The Research of Multi-core Parallel Al-gorithm for Interpolation[D].Shenyang:LiaoningNormal University,2011(苗莎.多核并行插值算法的研究[D].沈阳:辽宁师范大学,2011)[11] Cressie N,Johannesson G.Spatial Prediction for Mas-sive Datasets[C].The Australian Academy of ScienceElizabeth and Frederick White Conference,Australia,2006[12] Cressie N,Johannesson G.Fixed Rank Kriging forVery Large Spatial Data Sets[J].Journal of theRoyal Statistical Society:Series B(StatisticalMethodology),2008,70(1):209-226[13] Shi T,Cressie N.Global Statistical Analysis of MI-SR Aerosol Data:A Massive Data Product fromNASA′s Terra Satellite[J].Environmetrics,2007,18(7):665-680[14] Cressie N,Kang E L.High-resolution Digital SoilMapping:Kriging for Very Large Datasets[M].Netherlands:Springer,2010:49-63[15] Cressie N.Statistics for Spatial Data[M].US:John Wiley &Sons.Inc,1993[16] Woodbury M A.Inverting Modified Matrices[J].Memorandum Report,1950,42:106[17] Katzfuss M,Cressie N.Tutorial on Fixed RankKriging(FRK)of CO2Data[D].Columbus:TheOhio State University,2011
  • Cited by

    Periodical cited type(7)

    1. 邱龙. 基于无人机测绘图像的大面积地形变化特征提取方法. 北京测绘. 2024(06): 930-935 .
    2. 邓颖,蒋兴良,张志劲,曾蕴睿,马龙飞. 基于DEM分析的输电线路覆冰微地形分类识别及验证方法. 高电压技术. 2024(11): 4971-4980 .
    3. 巩鑫龙,田瑞,王孟. 220?kV正兰甲线所在微地形区域风场特性研究. 电力安全技术. 2024(11): 47-51 .
    4. 董慎学,石峰,刘刚,王有威,徐兆国. 垭口地形对输电线路风场分布特性影响分析. 重庆理工大学学报(自然科学). 2023(06): 340-346 .
    5. 吴建蓉,文屹,张啟黎,何锦强,张厚荣,龚博. 基于GIS的易覆冰微地形分类提取算法与三维应用. 高电压技术. 2023(S1): 1-5 .
    6. 周访滨,钟绍平,朱衍哲,杨自强,马国伟. 顾及爆燃地形特征的峡谷分级提取方法. 测绘科学. 2023(09): 89-98 .
    7. 胡京,邓颖,蒋兴良,曾蕴睿. 输电线路覆冰垭口微地形的特征提取与识别方法. 中国电力. 2022(08): 135-142 .

    Other cited types(0)

Catalog

    Article views (1173) PDF downloads (410) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return