QU Xiaochuan, AN Jiachun, LIU Gen. ,110(D24),DOI:10.1029/2005JD006302Analysis of Antarctic Tropopause with COSMIC Occultation Data[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 605-610. DOI: 10.13203/j.whugis20130728
Citation: QU Xiaochuan, AN Jiachun, LIU Gen. ,110(D24),DOI:10.1029/2005JD006302Analysis of Antarctic Tropopause with COSMIC Occultation Data[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 605-610. DOI: 10.13203/j.whugis20130728

,110(D24),DOI:10.1029/2005JD006302Analysis of Antarctic Tropopause with COSMIC Occultation Data

Funds: The National Natural Science Foundation of China , Nos. 41204028, 41231064, 41174029; the Fundamental Research Funds for the Central Universities , No. 121001;the Open Research Fund of Key Laboratory for Polar Science , SOA, No. KP201201; the Chinese Polar Environment Comprehensive Investigation and Assessment Programs.
More Information
  • Author Bio:

    QU Xiaochuan,PhD candidate,specializes in GNSS data processing and application.

  • Corresponding author:

    AN Jiachun

  • Received Date: December 03, 2013
  • Revised Date: May 04, 2014
  • Published Date: May 04, 2014
  • Objective Using COSMIC occultation data in 2011,the atmospheric temperature profiles in Antarcticaare inversed,and the tropopause parameters(temperature and altitude)are extracted.The spatial andtemporal Antarctic tropopause variations are analyzed quantitatively.In Antarctica,the temperaturelapse rate tropopause is more accurate than the coldest point tropopause,and the occultation method isthe same as ozonesonde and radiosonde.The Antarctic tropopause shows one wave structure with con-trary phase,temperature ranges from 200Kto 230K,the height from 9km to 11km.Antarctic trop-opause disappears in winter and spring,and occurs inversion layer in summer and autumn.The tropo-pause temperature in winter and spring shows significant gradient feature.In latitude direction,thetemperature is low near the pole,high around;in longitude direction,the temperature is lower in theWest Antarctica.
  • Related Articles

    [1]YU Daocheng, HWANG Jinway, ZHU Huizhong, LUO Jia, YUAN Jiajia. Enhancing Marine Gravity Field Precision Using SWOT Wideswath Altimetry Data: a Comparative Analysis with Traditional Altimetry Satellites[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240120
    [2]HE Huiyou, FANG Jian. Gravity Anomaly Spectrum Analysis Method and Its Application[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2092-2102. DOI: 10.13203/j.whugis20200510
    [3]XING Zhibin, LI Shanshan, WANG Wei, FAN Haopeng. Fast Approach to Constructing Normal Equation During the Time of Calculating Height Anomaly Difference by Using Vertical Deflections[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 778-783. DOI: 10.13203/j.whugis20140491
    [4]DU Jinsong, CHEN Chao, LIANG Qing, ZHANG Yi. Lunar Gravity Anomaly and Its Computational Method[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1369-1373.
    [5]LI Zhenhai, LUO Zhicai, WANG Haihong, ZHONG Bo. Requirements for Gravity Data Within the Given Accuracy of the Interpolated Gravity Anomaly[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1328-1331.
    [6]WU Yunsun, CHAO Dingbo, LI Jiancheng, WANG Zhengtao. Recovery of Ocean Depth Model of South China Sea from Altimetric Gravity Gradient Anomalies[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1423-1425.
    [7]WANG Haihong, NING Jinsheng, LUO Zhicai, LUO Jia. Separation of Gravity Anomalies Based on Multiscale Edges[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 109-112.
    [8]CHAO Dingbo, YAO Yunsheng, LI Jiancheng, XU Jusheng. Interpretaion on the Tectonics and Characteristics of Altimeter-derived Gravity Anomalies in China South Sea[J]. Geomatics and Information Science of Wuhan University, 2002, 27(4): 343-347.
    [9]Huang Motao, Guan Zheng, Ouyang Yongzhong. Calculation and Accuracy Estimation of Marine Mean Free-Air Gravity Anomaly[J]. Geomatics and Information Science of Wuhan University, 1995, 20(4): 327-331.
    [10]Guan Zelin, E Dongchen. The Computation of Geoidal Undulation Deflection of Vertical and Gravity Anomalies Using Clenshaw Summation[J]. Geomatics and Information Science of Wuhan University, 1986, 11(4): 75-82.
  • Cited by

    Periodical cited type(10)

    1. 费婷婷,丁晓婷,阙翔,林津,林健,王紫薇,刘金福. 基于SBM-DEA与STWR模型的中国能源碳排放效率时空异质性分析. 环境工程. 2024(10): 188-200 .
    2. 熊景华,郭生练,王俊,尹家波,李娜. 长江流域陆地水储量变化及归因研究. 武汉大学学报(信息科学版). 2024(12): 2241-2248 .
    3. 姜栋,赵文吉,王艳慧,万碧玉. 地理加权回归的城市道路时空运行态势空间网格计算方法. 武汉大学学报(信息科学版). 2023(06): 988-996 .
    4. 倪杰,吴通华,赵林,李韧,谢昌卫,吴晓东,朱小凡,杜宜臻,杨成,郝君明. 环北极多年冻土区碳循环研究进展与展望. 冰川冻土. 2019(04): 845-857 .
    5. 刘大元,张雪梅,岳跃民,王克林,邹冬生. 基于Geodetector的广西喀斯特植被覆盖变化及其影响因素分析. 农业现代化研究. 2019(06): 1038-1047 .
    6. 肖屹,何宗宜,苗静,潘峰,杨好. 利用搜索引擎数据模拟疾病空间分布. 测绘通报. 2018(02): 94-98 .
    7. 苗月鲜,方秀琴,吴小君,吴陶樱. 基于GWR模型的江西省山洪灾害区域异同性研究. 水土保持通报. 2018(01): 313-318+327 .
    8. 陈吕凤,朱国平. 基于地理加权模型的南设得兰群岛北部南极磷虾渔场空间分布影响分析. 应用生态学报. 2018(03): 938-944 .
    9. 张雪梅,王克林,岳跃民,童晓伟,廖楚杰,张明阳,姜岩. 生态工程背景下西南喀斯特植被变化主导因素及其空间非平稳性. 生态学报. 2017(12): 4008-4018 .
    10. 陈广威,陈吕凤,朱国平,徐玉成,田靖寰,丁博. 南乔治亚岛冬季南极磷虾渔场时空分布及其驱动因子. 生态学杂志. 2017(10): 2803-2810 .

    Other cited types(10)

Catalog

    Article views PDF downloads Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return